Analysis of the Impact of Machine Translation Evaluation Metrics for Semantic Textual Similarity

被引:1
作者
Magnolini, Simone [1 ,2 ]
Ngoc Phuoc An Vo [3 ]
Popescu, Octavian [4 ]
机构
[1] Univ Brescia, Brescia, Italy
[2] FBK, Trento, Italy
[3] Xerox Res Ctr Europe, Meylan, France
[4] IBM TJ Watson Res, Yorktown Hts, NY USA
来源
AI*IA 2016: ADVANCES IN ARTIFICIAL INTELLIGENCE | 2016年 / 10037卷
关键词
Semantic textual similarity; Machine translation evaluation metrics; Paraphrase recognition;
D O I
10.1007/978-3-319-49130-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a work to evaluate the hypothesis that automatic evaluation metrics developed forMachine Translation (MT) systems have significant impact on predicting semantic similarity scores in Semantic Textual Similarity (STS) task, in light of their usage for paraphrase identification. We show that different metrics may have different behaviors and significance along the semantic scale [0-5] of the STS task. In addition, we compare several classification algorithms using a combination of different MT metrics to build an STS system; consequently, we show that although this approach obtains remarkable result in paraphrase identification task, it is insufficient to achieve the same result in STS. We show that this problem is due to an excessive adaptation of some algorithms to dataset domain and at the end a way to mitigate or avoid this issue.
引用
收藏
页码:450 / 463
页数:14
相关论文
共 50 条
  • [21] Phrase-based Semantic Textual Similarity for Linking Researchers
    Reyes-Ortiz, Jose A.
    Bravo, Maricela
    Padilla, Omar E.
    2015 26TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2015, : 202 - 206
  • [23] Attentive Siamese LSTM Network for Semantic Textual Similarity Measure
    Bao, Wei
    Bao, Wugedele
    Du, Jinhua
    Yang, Yuanyuan
    Zhao, Xiaobing
    2018 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2018, : 312 - 317
  • [24] Leveraging on Semantic Textual Similarity for Developing a Portuguese Dialogue System
    Santos, Jose
    Alves, Ana
    Oliveira, Hugo Goncalo
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2020, 2020, 12037 : 131 - 142
  • [25] Interpretable semantic textual similarity: Finding and explaining differences between sentences
    Lopez-Gazpio, I.
    Maritxalar, M.
    Gonzalez-Agirre, A.
    Rigau, G.
    Uria, L.
    Agirre, E.
    KNOWLEDGE-BASED SYSTEMS, 2017, 119 : 186 - 199
  • [26] Aspect-Based Semantic Textual Similarity for Educational Test Items
    Do, Heejin
    Lee, Gary Geunbae
    ARTIFICIAL INTELLIGENCE IN EDUCATION, PT II, AIED 2024, 2024, 14830 : 344 - 352
  • [27] SenseMap: Urban Performance Visualization and Analytics Via Semantic Textual Similarity
    Chen, Juntong
    Huang, Qiaoyun
    Wang, Changbo
    Li, Chenhui
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (09) : 6275 - 6290
  • [28] Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT
    Mutinda, Faith Wavinya
    Yada, Shuntaro
    Wakamiya, Shoko
    Aramaki, Eiji
    METHODS OF INFORMATION IN MEDICINE, 2021, 60 : E56 - E64
  • [29] Semantic Textual Similarity of Portuguese-Language Texts: An Approach Based on the Semantic Inferentialism Model
    Pinheiro, Vladia
    Furtado, Vasco
    Albuquerque, Adriano
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, 2014, 8775 : 183 - 188
  • [30] A resource-light method for cross-lingual semantic textual similarity
    Glavas, Goran
    Franco-Salvador, Marc
    Ponzetto, Simone P.
    Rosso, Paolo
    KNOWLEDGE-BASED SYSTEMS, 2018, 143 : 1 - 9