Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana

被引:41
|
作者
Ghassemian, Majid [2 ]
Lutes, Jason [2 ]
Chang, Hur-Song [2 ]
Lange, Iris [1 ]
Chen, Wenqiong [2 ]
Zhu, Tong [2 ]
Wang, Xun [2 ]
Lange, B. Markus [1 ,2 ]
机构
[1] Washington State Univ, Inst Biol Chem, MJ Murdock Metabol Lab, Pullman, WA 99164 USA
[2] Torrey Mesa Res Inst, San Diego, CA 92121 USA
关键词
Arabidopsis thaliana; Cruciferae; Abscisic acid; Alternative oxidase; Ascorbic acid; BioPathAt; Metabolite profiling; Microarray; Redox regulation; Systems biology;
D O I
10.1016/j.phytochem.2008.09.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abscisic acid (ABA) has been implicated as a mediator in plant responses to various environmental stresses. To evaluate the transcriptional and metabolic events downstream of ABA perception, Arabidopsis thaliana seedlings were analyzed by transcript and metabolite profiling, and results were integrated, using the recently developed BioPathAt tool, in the context of the biochemical pathways affected by this treatment. Besides the up-regulation of pathways related to the biosynthesis of compatible solutes (raffinose family oligosaccharides and certain amino acids) as a response to ABA treatment, we also observed a down-regulation of numerous genes putatively localized to and possibly involved in the reorganization of cell walls, an association that had not been recognized previously. Metabolite profiling indicated that specific antioxidants, particularly alpha-tocopherol and L-ascorbic acid, were accumulated at higher levels in ABA-treated seedlings compared to appropriate controls. The transcription of genes involved in alpha-tocopherol biosynthesis were coordinately up-regulated and appeared to be integrated into a network of reactions controlling the levels of reactive oxygen species. Based upon the observed gene expression patterns, these redox control mechanisms might involve an ABA-mediated transition of mitochondrial respiration to the alternative, non-phosphorylating respiratory chain mode. The presented data herein provide indirect evidence for crosstalk between metabolic pathways and pathways regulating redox homeostasis as a response to ABA treatment, and allowed us to identify candidate genes for follow-up studies to dissect this interaction at the biochemical and molecular level. Our results also indicate an intricate relationship, at the transcriptional and possibly post-transcriptional levels, between ABA biosynthesis, the xanthophyll cycle, and ascorbic acid recycling. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2899 / 2911
页数:13
相关论文
共 50 条
  • [1] Two calcium mobilizing pathways implicated within abscisic acid-induced stomatal closing in Arabidopsis thaliana
    Cousson, A.
    BIOLOGIA PLANTARUM, 2007, 51 (02) : 285 - 291
  • [2] Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis
    Tanaka, Y
    Sano, T
    Tamaoki, M
    Nakajima, N
    Kondo, N
    Hasezawa, S
    PLANT PHYSIOLOGY, 2005, 138 (04) : 2337 - 2343
  • [3] Ethylene inhibits stomatal closure induced by abscisic acid in Arabidopsis thaliana
    Tanaka, Y
    Sano, T
    Tamaoki, M
    Nakajima, N
    Kondo, N
    Hasezawa, S
    PLANT AND CELL PHYSIOLOGY, 2005, 46 : S50 - S50
  • [4] Abscisic acid suppresses thermomorphogenesis in Arabidopsis thaliana
    Xu, Yang
    Zhu, Ziqiang
    PLANT SIGNALING & BEHAVIOR, 2020, 15 (05)
  • [5] Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana
    Meimoun, Patrice
    Vidal, Guillaume
    Bohrer, Anne-Sophie
    Lehner, Arnaud
    Tran, Daniel
    Briand, Joel
    Bouteau, Francois
    Rona, Jean-Pierre
    PLANT SIGNALING & BEHAVIOR, 2009, 4 (09) : 830 - 835
  • [6] Signaling pathways Ku mediating the suppression of Arabidopsis thaliana gene expression by abscisic acid
    Liu, Pei Feng
    Chang, Wen Chi
    Wang, Yung Kai
    Chang, Hwan You
    Pan, Rong Long
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2008, 1779 (03): : 164 - 174
  • [7] Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis
    Okuma, Eiji
    Jahan, Md Sarwar
    Munemasa, Shintaro
    Hossain, Mohammad Anowar
    Muroyama, Daichi
    Islam, Mohammad Mahbub
    Ogawa, Ken'ichi
    Watanabe-Sugimoto, Megumi
    Nakamura, Yoshimasa
    Shimoishi, Yasuaki
    Mori, Izumi C.
    Murata, Yoshiyuki
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (17) : 2048 - 2055
  • [8] Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana
    Benson, Chantel L.
    Kepka, Michal
    Wunschel, Christian
    Rajagopalan, Nandhakishore
    Nelson, Ken M.
    Christmann, Alexander
    Abrams, Suzanne R.
    Grill, Erwin
    Loewen, Michele C.
    PHYTOCHEMISTRY, 2015, 113 : 96 - 107
  • [9] SPY Interacts With Tubulin and Regulates Abscisic Acid-Induced Stomatal Closure in Arabidopsis
    Liu, Tongtong
    Wang, Pan
    Wang, Zixuan
    Dun, Weipeng
    Li, Jing
    Yu, Rong
    PLANT DIRECT, 2025, 9 (04)
  • [10] Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua
    Cipollini, D
    Enright, S
    Traw, MB
    Bergelson, J
    MOLECULAR ECOLOGY, 2004, 13 (06) : 1643 - 1653