NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION

被引:14
|
作者
Georgiev, Bogdan [1 ]
Mukherjee, Mayukh [1 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
来源
ANALYSIS & PDE | 2018年 / 11卷 / 01期
关键词
Laplace eigenfunctions; nodal domains; Brownian motion; INNER RADIUS; EIGENVALUE; EIGENFUNCTIONS; MANIFOLDS; DOMAINS; SETS;
D O I
10.2140/apde.2018.11.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use tools from n-dimensional Brownian motion in conjunction with the Feynman-Kac formulation of heat diffusion to study nodal geometry on a compact Riemannian manifold M. On one hand we extend a theorem of Lieb (1983) and prove that any Laplace nodal domain Omega(lambda) subset of M almost fully contains a ball of radius similar to 1/root lambda(1)(Omega(lambda)) and such a ball can be centred at any point of maximum of the Dirichlet ground state phi(lambda 1)(Omega(lambda))This also gives a slight refinement of a result by Mangoubi (2008) concerning the inradius of nodal domains. On the other hand, we also prove that no nodal domain can be contained in a reasonably narrow tubular neighbourhood of unions of finitely many submanifolds inside M.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 50 条
  • [41] Granular Brownian motion
    Sarracino, A.
    Villamaina, D.
    Costantini, G.
    Puglisi, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [42] Brownian motion of a torus
    Thaokar, Rochish M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 317 (1-3) : 650 - 657
  • [43] Quantization of Brownian motion
    Rabei, Eqab M.
    Ajlouni, Abdul-Wali
    Ghassib, Humam B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (09) : 1619 - 1629
  • [44] Coupled Brownian Motion
    Sempi, Carlo
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 569 - 574
  • [45] Relativistic Brownian motion
    Dunkel, Joern
    Haenggi, Peter
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 471 (01): : 1 - 73
  • [46] Spinning Brownian motion
    Duarte, Mauricio A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4178 - 4203
  • [47] Reflected Brownian motion: selection, approximation and linearization
    Arnaudon, Marc
    Li, Xue-Mei
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [48] Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry
    Xiao, Boqi
    Yang, Yi
    Chen, Lingxia
    POWDER TECHNOLOGY, 2013, 239 : 409 - 414
  • [49] Dimension of fractional Brownian motion with variable drift
    Peres, Yuval
    Sousi, Perla
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 165 (3-4) : 771 - 794
  • [50] A note on the Brownian motion
    Kawazu, K
    From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, 2006, : 385 - 392