NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION

被引:14
|
作者
Georgiev, Bogdan [1 ]
Mukherjee, Mayukh [1 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
来源
ANALYSIS & PDE | 2018年 / 11卷 / 01期
关键词
Laplace eigenfunctions; nodal domains; Brownian motion; INNER RADIUS; EIGENVALUE; EIGENFUNCTIONS; MANIFOLDS; DOMAINS; SETS;
D O I
10.2140/apde.2018.11.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use tools from n-dimensional Brownian motion in conjunction with the Feynman-Kac formulation of heat diffusion to study nodal geometry on a compact Riemannian manifold M. On one hand we extend a theorem of Lieb (1983) and prove that any Laplace nodal domain Omega(lambda) subset of M almost fully contains a ball of radius similar to 1/root lambda(1)(Omega(lambda)) and such a ball can be centred at any point of maximum of the Dirichlet ground state phi(lambda 1)(Omega(lambda))This also gives a slight refinement of a result by Mangoubi (2008) concerning the inradius of nodal domains. On the other hand, we also prove that no nodal domain can be contained in a reasonably narrow tubular neighbourhood of unions of finitely many submanifolds inside M.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 50 条
  • [31] Uniqueness of Brownian motion on Sierpinski carpets
    Barlow, Martin T.
    Bass, Richard F.
    Kumagai, Takashi
    Teplyaev, Alexander
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (03) : 655 - 701
  • [32] A Collection of Results Relating the Geometry of Plane Domains and the Exit Time of Planar Brownian Motion
    Boudabra, Maher
    Buttigieg, Andrew
    Markowsky, Greg
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (03) : 469 - 488
  • [33] A Collection of Results Relating the Geometry of Plane Domains and the Exit Time of Planar Brownian Motion
    Maher Boudabra
    Andrew Buttigieg
    Greg Markowsky
    Computational Methods and Function Theory, 2023, 23 : 469 - 488
  • [34] Some It Formulas with Respect to Mixed Fractional Brownian Motion and Brownian Motion
    舒慧生
    阚秀
    周海涛
    JournalofDonghuaUniversity(EnglishEdition), 2010, 27 (04) : 530 - 534
  • [35] On the excursions of drifted Brownian motion and the successive passage times of Brownian motion
    Abundo, Mario
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 176 - 182
  • [36] Path Regularity of the Brownian Motion and the Brownian Sheet
    Kempka, H.
    Schneider, C.
    Vybiral, J.
    CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 485 - 539
  • [37] Convex Hull of Brownian Motion and Brownian Bridge
    Sebek, Stjepan
    MARKOV PROCESSES AND RELATED FIELDS, 2024, 30 (04) : 459 - 475
  • [38] Path Regularity of the Brownian Motion and the Brownian Sheet
    H. Kempka
    C. Schneider
    J. Vybiral
    Constructive Approximation, 2024, 59 : 485 - 539
  • [39] Catastrophes in brownian motion
    Guz, SA
    Mannella, R
    Sviridov, MV
    PHYSICS LETTERS A, 2003, 317 (3-4) : 233 - 241
  • [40] Brownian Motion of Graphene
    Marago, Onofrio M.
    Bonaccorso, Francesco
    Saija, Rosalba
    Privitera, Giulia
    Gucciardi, Pietro G.
    Iati, Maria Antonia
    Calogero, Giuseppe
    Jones, Philip H.
    Borghese, Ferdinando
    Denti, Paolo
    Nicolosi, Valeria
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (12) : 7515 - 7523