NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION

被引:14
|
作者
Georgiev, Bogdan [1 ]
Mukherjee, Mayukh [1 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
来源
ANALYSIS & PDE | 2018年 / 11卷 / 01期
关键词
Laplace eigenfunctions; nodal domains; Brownian motion; INNER RADIUS; EIGENVALUE; EIGENFUNCTIONS; MANIFOLDS; DOMAINS; SETS;
D O I
10.2140/apde.2018.11.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use tools from n-dimensional Brownian motion in conjunction with the Feynman-Kac formulation of heat diffusion to study nodal geometry on a compact Riemannian manifold M. On one hand we extend a theorem of Lieb (1983) and prove that any Laplace nodal domain Omega(lambda) subset of M almost fully contains a ball of radius similar to 1/root lambda(1)(Omega(lambda)) and such a ball can be centred at any point of maximum of the Dirichlet ground state phi(lambda 1)(Omega(lambda))This also gives a slight refinement of a result by Mangoubi (2008) concerning the inradius of nodal domains. On the other hand, we also prove that no nodal domain can be contained in a reasonably narrow tubular neighbourhood of unions of finitely many submanifolds inside M.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 50 条
  • [1] Is Brownian Motion Sensitive to Geometry Fluctuations?
    C. Chevalier
    F. Debbasch
    Journal of Statistical Physics, 2008, 131 : 717 - 731
  • [2] Is brownian motion sensitive to geometry fluctuations?
    Chevalier, C.
    Debbasch, F.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 717 - 731
  • [3] Kolmogorov complexity and the geometry of Brownian motion
    Fouche, Willem L.
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2015, 25 (07) : 1590 - 1606
  • [4] Brownian Motion and Riemannian Geometry in the Neighbourhood of a Submanifold
    Martin N. Ndumu
    Potential Analysis, 2011, 34 : 309 - 343
  • [5] Diffusion in a model for active Brownian motion
    Condat, CA
    Sibona, GJ
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 : 235 - 243
  • [6] Brownian Motion and Riemannian Geometry in the Neighbourhood of a Submanifold
    Ndumu, Martin N.
    POTENTIAL ANALYSIS, 2011, 34 (04) : 309 - 343
  • [7] Blending Brownian motion and heat equation
    Cristiani, Emiliano
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2015, 3 (04) : 351 - 356
  • [8] BROWNIAN MOTION IN DIRE STRAITS
    Holcman, D.
    Schuss, Z.
    MULTISCALE MODELING & SIMULATION, 2012, 10 (04) : 1204 - 1231
  • [9] Hindered Brownian diffusion in a square-shaped geometry
    Gentile, Francesco S.
    De Santo, Ilaria
    D'Avino, Gaetano
    Rossi, Lucio
    Romeo, Giovanni
    Greco, Francesco
    Netti, Paolo A.
    Maffettone, Pier Luca
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 447 : 25 - 32
  • [10] Heat flow, Brownian motion and Newtonian capacity
    van den Berg, M.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (02): : 193 - 214