Uniquely Decodable Code-Division via Augmented Sylvester-Hadamard Matrices

被引:0
作者
Kulhandjian, Michel [1 ]
Pados, Dimitris A. [1 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
来源
2012 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC) | 2012年
关键词
Code-division multiplexing; detecting matrices; Hadamard matrices; Karystinos-Pados bound; Welch bound; TOTAL-SQUARED-CORRELATION; SYNCHRONOUS-CDMA SYSTEMS; KARYSTINOS-PADOS BOUNDS; BINARY SIGNATURE SETS; DESIGN;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of designing binary antipodal uniquely decodable (errorless) code sets for overloaded code-division multiplexing applications where the number of signals K is larger than the code length L. Our proposed errorless code set design aims at identifying the maximum number of columns that can be potentially appended to a Sylvester-Hadamard matrix of order L, while maintaining the errorless code property. In particular, we derive formally the maximum number of columns that may be appended to the Sylvester-Hadamard matrix of order L = 8 and use this result as a seed to produce an infinite sequence of designs in increasing L. In the noiseless transmission case, a simple algorithm is developed to uniquely decode all signals. In additive white Gaussian noise (AWGN), a slab-sphere decoding scheme can be utilized for efficient and effective decoding.
引用
收藏
页数:5
相关论文
共 13 条