Explicitly solvable cases of one-dimensional quantum chaos -: art. no. 044101

被引:57
作者
Blümel, R [1 ]
Dabaghian, Y [1 ]
Jensen, RV [1 ]
机构
[1] Wesleyan Univ, Dept Phys, Middletown, CT 06459 USA
关键词
D O I
10.1103/PhysRevLett.88.044101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify a set of quantum graphs with unique and precisely defined spectral properties called regular quantum graphs. Although chaotic in their classical limit with positive topological entropy, regular quantum graphs are explicitly solvable. The proof is constructive: we present exact, convergent periodic orbit expansions for individual energy levels, thus obtaining an analytical solution for the spectrum of regular quantum graphs that is complete, explicit, and exact.
引用
收藏
页数:4
相关论文
共 21 条
  • [11] Quantum chaos on graphs
    Kottos, T
    Smilansky, U
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (24) : 4794 - 4797
  • [12] Periodic orbit theory and spectral statistics for quantum graphs
    Kottos, T
    Smilansky, U
    [J]. ANNALS OF PHYSICS, 1999, 274 (01) : 76 - 124
  • [13] NOVIKOV SP, 1997, USP MAT NAUK, V52, P177, DOI 10.4213/rm910
  • [14] NOVIKOV SP, 1999, USP MAT NAUK, V54, P147, DOI 10.4213/rm212
  • [15] NOVIKOV SP, 1997, USP MAT NAUK, V52, P175, DOI 10.4213/rm889
  • [16] Persistent currents on networks
    Pascaud, M
    Montambaux, G
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (22) : 4512 - 4515
  • [17] Smoothed density of states for problems with ray splitting
    Prange, RE
    Ott, E
    Antonsen, TM
    Georgeot, B
    Blumel, R
    [J]. PHYSICAL REVIEW E, 1996, 53 (01): : 207 - 213
  • [18] ROTH JP, 1984, LECT NOTES MATH, V1096, P521
  • [19] Periodic-orbit theory of Anderson localization on graphs
    Schanz, H
    Smilansky, U
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (07) : 1427 - 1430
  • [20] Experimental identification of non-newtonian orbits produced by ray splitting in a dielectric-loaded microwave cavity
    Sirko, L
    Koch, PM
    Blumel, R
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (15) : 2940 - 2943