A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material

被引:89
作者
Lin, Lu-Yin [1 ]
Yeh, Min-Hsin [1 ]
Tsai, Jin-Ting [2 ]
Huang, Yuan-Han [2 ]
Sun, Chia-Liang [2 ,3 ]
Ho, Kuo-Chuan [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
[2] Chang Gung Univ, Dept Chem & Mat Engn, Tao Yuan 333, Taiwan
[3] Chang Gung Univ, Biosensor Grp, Biomed Engn Res Ctr, Tao Yuan 333, Taiwan
关键词
HIGH-PERFORMANCE SUPERCAPACITOR; DOUBLE-LAYER CAPACITORS; HIGH-SURFACE-AREA; ELECTROCHEMICAL CAPACITORS; ACTIVATED CARBONS; ASSISTED SYNTHESIS; POROUS CARBON; ELECTRODES; DEVICES; ENERGY;
D O I
10.1039/c3ta12037f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel core-shell heterostructure with multi-walled carbon nanotubes as the core and graphene oxide nanoribbons as the shell (MWCNT@GONR), fabricated by the facile unzipping of MWCNTs with the help of microwave energy, was used as a supercapacitor (SC) electrode material. Graphene nanopowder (GNP) and multi-walled carbon nanotubes (MWCNTs) have also been applied as SC materials for comparison. A smooth surface and a tube-like structure are found for the GNP and MWCNTs, respectively, while for the MWCNT@GONR material, graphene oxide sheet structures are observed on both sides of central nanotube cores that retain their tube-like structure. The specific capacitance is much better for the SC electrode with the MWCNT@GONR (252.4 F g(-1)) compared to the SC electrodes with commercial MWCNTs (39.7 F g(-1)) and GNP (19.8 F g(-1)), as determined using cyclic voltammetry (CV) at a scan rate of 50 mV s(-1), which is due to the defective edges of the nanostructures in the former. The SC electrode with the MWCNT@GONR also exhibits good stability and capacitance retention even after 1000 cycles of galvanostatic charge-discharge testing, indicating its potential as a SC material. CV, galvanostatic charge-discharge (GC/D) and electrochemical impedance spectroscopy (EIS) were applied to analyze the SC performance.
引用
收藏
页码:11237 / 11245
页数:9
相关论文
共 60 条
[1]   High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole [J].
An, KH ;
Jeon, KK ;
Heo, JK ;
Lim, SC ;
Bae, DJ ;
Lee, YH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A1058-A1062
[2]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[3]   Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors [J].
Balathanigaimani, M. S. ;
Shim, Wang-Geun ;
Lee, Min-Joo ;
Kim, Chan ;
Lee, Jae-Wook ;
Moon, Hee .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (06) :868-871
[4]   Capacitance limits of high surface area activated carbons for double layer capacitors [J].
Barbieri, O ;
Hahn, M ;
Herzog, A ;
Kötz, R .
CARBON, 2005, 43 (06) :1303-1310
[5]   Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5667-5671
[6]   Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
CHEMICAL COMMUNICATIONS, 2012, 48 (10) :1425-1427
[7]   Graphene electrochemistry: fundamental concepts through to prominent applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (21) :6944-6976
[8]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[9]   Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors [J].
Chen, Cheng-Meng ;
Zhang, Qiang ;
Yang, Mang-Guo ;
Huang, Chun-Hsien ;
Yang, Yong-Gang ;
Wang, Mao-Zhang .
CARBON, 2012, 50 (10) :3572-3584
[10]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191