SGGformer: Shifted Graph Convolutional Graph-Transformer for Traffic Prediction

被引:0
|
作者
Pu, Shilin [1 ]
Chu, Liang [1 ]
Hu, Jincheng [2 ]
Li, Shibo [1 ]
Li, Jihao [2 ]
Sun, Wen [3 ]
机构
[1] Jilin Univ, Coll Automot Engn, Changchun 130022, Peoples R China
[2] Loughborough Univ, Dept Aeronaut & Automot Engn, Loughborough LE11 3TU, Leics, England
[3] Changzhou Inst Technol, Coll Automot Engn, Changzhou 213032, Peoples R China
关键词
Graph Transformer; multi-channel GCN; shifted window operation; traffic prediction; deep learning;
D O I
10.3390/s22229024
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate traffic prediction is significant in intelligent cities' safe and stable development. However, due to the complex spatiotemporal correlation of traffic flow data, establishing an accurate traffic prediction model is still challenging. Aiming to meet the challenge, this paper proposes SGGformer, an advanced traffic grade prediction model which combines a shifted window operation, a multi-channel graph convolution network, and a graph Transformer network. Firstly, the shifted window operation is used for coarsening the time series data, thus, the computational complexity can be reduced. Then, a multi-channel graph convolutional network is adopted to capture and aggregate the spatial correlations of the roads in multiple dimensions. Finally, the improved graph Transformer based on the advanced Transformer model is proposed to extract the long-term temporal correlation of traffic data effectively. The prediction performance is evaluated by using actual traffic datasets, and the test results show that the SGGformer proposed exceeds the state-of-the-art baseline.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] STFGCN: Spatial-temporal fusion graph convolutional network for traffic prediction
    Li, Hao
    Liu, Jie
    Han, Shiyuan
    Zhou, Jin
    Zhang, Tong
    Chen, C. L. Philip
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [42] Deep spatio-temporal graph convolutional network for traffic accident prediction
    Yu, Le
    Du, Bowen
    Hu, Xiao
    Sun, Leilei
    Han, Liangzhe
    Lv, Weifeng
    NEUROCOMPUTING, 2021, 423 (423) : 135 - 147
  • [43] MA-GCN: A Memory Augmented Graph Convolutional Network for traffic prediction
    Peng, Dunlu
    Zhang, Yongsheng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [44] Learning graph in graph convolutional neural networks for robust seizure prediction
    Lian, Qi
    Qi, Yu
    Pan, Gang
    Wang, Yueming
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (03)
  • [45] Hybrid Graph Models for Traffic Prediction
    Chen, Renyi
    Yao, Huaxiong
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [46] Transformer and Graph Transformer-Based Prediction of Drug-Target Interactions
    Qian, Meiling
    Lu, Weizhong
    Zhang, Yu
    Liu, Junkai
    Wu, Hongjie
    Lu, Yaoyao
    Li, Haiou
    Fu, Qiming
    Shen, Jiyun
    Xiao, Yongbiao
    CURRENT BIOINFORMATICS, 2024, 19 (05) : 470 - 481
  • [47] Traffic Prediction Based on Multi-graph Spatio-Temporal Convolutional Network
    Yao, Xiaomin
    Zhang, Zhenguo
    Cui, Rongyi
    Zhao, Yahui
    WEB INFORMATION SYSTEMS AND APPLICATIONS (WISA 2021), 2021, 12999 : 144 - 155
  • [48] Traffic Speed Prediction Based on Time Classification in Combination With Spatial Graph Convolutional Network
    Pan, Xiuqin
    Hou, Fei
    Li, Sumin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8799 - 8808
  • [49] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [50] Topological Graph Convolutional Network-Based Urban Traffic Flow and Density Prediction
    Qiu, Han
    Zheng, Qinkai
    Msahli, Mounira
    Memmi, Gerard
    Qiu, Meikang
    Lu, Jialiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4560 - 4569