The heat capacity and entropy of lithium silicides over the temperature range from (2 to 873) K

被引:32
作者
Thomas, Daniel [1 ]
Abdel-Hafiez, Mahmoud [2 ]
Gruber, Thomas [3 ]
Huettl, Regina [1 ]
Seidel, Juergen [1 ]
Wolter, Anja U. B. [2 ]
Buechner, Bernd [2 ]
Kortus, Jens [3 ]
Mertens, Florian [1 ]
机构
[1] TU Bergakad Freiberg, Inst Phys Chem, Fac Chem & Phys, D-09596 Freiberg, Germany
[2] Leibniz Inst Solid State & Mat Res IFW Dresden, Inst Solid State Res, D-01069 Dresden, Germany
[3] TU Bergakad Freiberg, Inst Theoret Phys, Fac Chem & Phys, D-09596 Freiberg, Germany
关键词
Lithium silicide; Heat capacity; Entropy; LIQUID LITHIUM; ZINTL PHASE; SILICON; ENTHALPY; COPPER; ANODE; LISI;
D O I
10.1016/j.jct.2013.05.018
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work presents the heat capacities of the four lithium silicide phases Li12Si7, Li7Si3, Li13Si4, and Li22Si5/Li21Si5 as a function of temperature over the range from (2 to 873) K. The measurements were carried out using three different calorimeters. The heat capacities were determined over the range between (2 and 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, within the range between (283 and 353) K by means of a Micro DSC II (Setaram), and data between (303 and 873) K were measured by using a Sensys DSC from Setaram applying the C-p-by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and up to 8% below 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. The results represent a significant broadening of the data basis for thermodynamic calculations (e.g. CALPHAD) in the Li + Si system. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:205 / 225
页数:21
相关论文
共 51 条
[1]   Specific heat and upper critical fields in KFe2As2 single crystals [J].
Abdel-Hafiez, M. ;
Aswartham, S. ;
Wurmehl, S. ;
Grinenko, V. ;
Hess, C. ;
Drechsler, S. -L. ;
Johnston, S. ;
Wolter, A. U. B. ;
Buechner, B. ;
Rosner, H. ;
Boeri, L. .
PHYSICAL REVIEW B, 2012, 85 (13)
[2]  
[Anonymous], 1998, NISTChemistry WebBook, NIST Standard Reference Database Number 69
[3]   ZUR KENNTNIS DER PHASE LI22SI5 [J].
AXEL, H ;
SCHAFER, H ;
WEISS, A .
ZEITSCHRIFT FUR NATURFORSCHUNG PART B-CHEMIE BIOCHEMIE BIOPHYSIK BIOLOGIE UND VERWANDTEN GEBIETE, 1966, B 21 (02) :115-&
[4]   Density-Functional Perturbation Theory for Quasi-Harmonic Calculations [J].
Baroni, Stefano ;
Giannozzi, Paolo ;
Isaev, Eyvaz .
THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, 2010, 71 :39-57
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]  
BOHM H, 1959, Z METALLKD, V50, P44
[7]   Phase field simulations in miscibility gaps [J].
Braga, M. H. ;
Oliveira, J. C. R. E. ;
Malheiros, L. F. ;
Ferreira, J. A. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2009, 33 (01) :237-243
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Structural and electrochemical study of the reaction of lithium with silicon nanowires [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :34-39
[10]   First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations [J].
Chevrier, V. L. ;
Zwanziger, J. W. ;
Dahn, J. R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 496 (1-2) :25-36