Cell adhesion and polarisation on molecularly defined spacing gradient surfaces of cyclic RGDfK peptide patches

被引:60
作者
Hirschfeld-Warneken, Vera C. [1 ,2 ]
Arnold, Marco [1 ,2 ]
Cavalcanti-Adam, Ada [1 ,2 ]
Lopez-Garcia, Monica [3 ]
Kessler, Horst [3 ]
Spatz, Joachim P. [1 ,2 ]
机构
[1] Max Planck Inst Met Res, Dept New Mat & Biosyst, D-70569 Stuttgart, Germany
[2] Heidelberg Univ, Dept Biophys Chem, D-6900 Heidelberg, Germany
[3] Tech Univ Munich, Ctr Integrated Prot Sci, Dept Chem, D-85747 Garching, Germany
基金
美国国家卫生研究院;
关键词
nanotechnology; nanopattern; peptide gradient; biofunctionalisation; cell adhesion; cell polarisation;
D O I
10.1016/j.ejcb.2008.03.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In vivo cell migration and location are orchestrally guided by soluble and bound chemical gradients. Here, gradients of extracellular matrix molecules are formed synthetically by the combination Of a Surface nanopatterning technique called block copolymer nanolithography (BCN) and a biofunctionalisation technique. A modified Substrate dip-coating process of BCN allows for the Formation of precise molecular gradients of cyclic RGDfK peptide patches at interfaces, which are presented to cells for testing cell adhesion and polarisation. Surfaces formed by BCN consist of hexagonally ordered gold dot patterns with a gradient in particle spacing. Each dot serves as a chemical anchor for the binding of cyclic RGDfK peptides, which are specifically recognised by alpha(v)beta(3) integrins. Due to steric hindrance Only Lip to one integrin binds to one functionalised gold dot which forms a peptide patch spacing. We demonstrate how cell morphology, adhesion area, actin and vinculin distribution as well as cell body polarisation are influenced by the peptide patch spacing gradient. As a consequence, these gradients of adhesive ligands induce cell orientation towards smaller particle spacing when the gradient strength is 15 nm/mm at least. This implicates that an adherent cell's sensitivity to differentiate between ligand patch spacing is approximately 1 nm across the cell body. (C) 2008 Elsevier GmbH. All rights reserved.
引用
收藏
页码:743 / 750
页数:8
相关论文
共 31 条
[1]   Activation of integrin function by nanopatterned adhesive interfaces [J].
Arnold, M ;
Cavalcanti-Adam, EA ;
Glass, R ;
Blümmel, J ;
Eck, W ;
Kantlehner, M ;
Kessler, H ;
Spatz, JP .
CHEMPHYSCHEM, 2004, 5 (03) :383-388
[2]  
ARNOLD M, 2006, THESIS U HEIDELBERG
[3]   Protein repellent properties of covalently attached PEG coatings on nanostructured SiO2-based interfaces [J].
Bluemmel, Jacques ;
Perschmann, Nadine ;
Aydin, Daniel ;
Drinjakovic, Jovana ;
Surrey, Thomas ;
Lopez-Garcia, Monica ;
Kessler, Horst ;
Spatz, Joachim P. .
BIOMATERIALS, 2007, 28 (32) :4739-4747
[5]   PRINCIPLES OF CELL MOTILITY - DIRECTION OF CELL MOVEMENT AND CANCER INVASION [J].
CARTER, SB .
NATURE, 1965, 208 (5016) :1183-&
[6]   Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly [J].
Cavalcanti-Adam, EA ;
Micoulet, A ;
Blümmel, J ;
Auernheimer, J ;
Kessler, H ;
Spatz, JP .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2006, 85 (3-4) :219-224
[7]   Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands [J].
Cavalcanti-Adam, Elisabetta Ada ;
Volberg, Tova ;
Micoulet, Alexandre ;
Kessler, Horst ;
Geiger, Benjamin ;
Spatz, Joachim Pius .
BIOPHYSICAL JOURNAL, 2007, 92 (08) :2964-2974
[8]   Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration [J].
DeLong, SA ;
Moon, JJ ;
West, JL .
BIOMATERIALS, 2005, 26 (16) :3227-3234
[9]   Gradients of substrate-bound laminin orient axonal specification of neurons [J].
Dertinger, SKW ;
Jiang, XY ;
Li, ZY ;
Murthy, VN ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12542-12547
[10]   MAXIMAL MIGRATION OF HUMAN SMOOTH-MUSCLE CELLS ON FIBRONECTIN AND TYPE-IV COLLAGEN OCCURS AT AN INTERMEDIATE ATTACHMENT STRENGTH [J].
DIMILLA, PA ;
STONE, JA ;
QUINN, JA ;
ALBELDA, SM ;
LAUFFENBURGER, DA .
JOURNAL OF CELL BIOLOGY, 1993, 122 (03) :729-737