The rapidly increasing quantity of genome-wide chromosome conformation capture data presents great opportunities and challenges in the computational modeling and interpretation of the three-dimensional genome. In particular, with recent trends towards higher-resolution high-throughput chromosome conformation capture (Hi-C) data, the diversity and complexity of biological hypotheses that can be tested necessitates rigorous computational and statistical methods as well as scalable pipelines to interpret these datasets. Here we review computational tools to interpret Hi-C data, including pipelines for mapping, filtering, and normalization, and methods for confidence estimation, domain calling, visualization, and three-dimensional modeling.
机构:
JFCR, Div Canc Biol, Canc Inst, Koto Ku, 3-8-31 Ariake, Tokyo 1358550, JapanJFCR, Div Canc Biol, Canc Inst, Koto Ku, 3-8-31 Ariake, Tokyo 1358550, Japan
Tachiwana, Hiroaki
Yamamoto, Tatsuro
论文数: 0引用数: 0
h-index: 0
机构:
JFCR, Div Canc Biol, Canc Inst, Koto Ku, 3-8-31 Ariake, Tokyo 1358550, JapanJFCR, Div Canc Biol, Canc Inst, Koto Ku, 3-8-31 Ariake, Tokyo 1358550, Japan
Yamamoto, Tatsuro
Saitoh, Noriko
论文数: 0引用数: 0
h-index: 0
机构:
JFCR, Div Canc Biol, Canc Inst, Koto Ku, 3-8-31 Ariake, Tokyo 1358550, JapanJFCR, Div Canc Biol, Canc Inst, Koto Ku, 3-8-31 Ariake, Tokyo 1358550, Japan
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, Div Bioinformat, San Francisco, CA 94158 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, Div Bioinformat, San Francisco, CA 94158 USA
Segal, Mark R.
Bengtsson, Henrik L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, Div Bioinformat, San Francisco, CA 94158 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, Div Bioinformat, San Francisco, CA 94158 USA