Analysis methods for studying the 3D architecture of the genome

被引:94
|
作者
Ay, Ferhat [1 ,2 ]
Noble, William S. [1 ,3 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60661 USA
[3] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
来源
GENOME BIOLOGY | 2015年 / 16卷
基金
美国国家卫生研究院;
关键词
Genome architecture; Chromatin conformation capture; Three-dimensional genome; Three-dimensional modeling; HI-C DATA; CHROMOSOME CONFORMATION CAPTURE; CHROMATIN INTERACTIONS; TOPOLOGICAL DOMAINS; FUNCTIONAL-ORGANIZATION; INTERACTION FREQUENCY; 3-DIMENSIONAL GENOME; POISSON REGRESSION; DROSOPHILA GENOME; EPIGENOME BROWSER;
D O I
10.1186/s13059-015-0745-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The rapidly increasing quantity of genome-wide chromosome conformation capture data presents great opportunities and challenges in the computational modeling and interpretation of the three-dimensional genome. In particular, with recent trends towards higher-resolution high-throughput chromosome conformation capture (Hi-C) data, the diversity and complexity of biological hypotheses that can be tested necessitates rigorous computational and statistical methods as well as scalable pipelines to interpret these datasets. Here we review computational tools to interpret Hi-C data, including pipelines for mapping, filtering, and normalization, and methods for confidence estimation, domain calling, visualization, and three-dimensional modeling.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] 3D chromatin architecture and transcription regulation in cancer
    Deng, Siwei
    Feng, Yuliang
    Pauklin, Siim
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2022, 15 (01)
  • [32] Improved accuracy assessment for 3D genome reconstructions
    Segal, Mark R.
    Bengtsson, Henrik L.
    BMC BIOINFORMATICS, 2018, 19
  • [33] Toward understanding the dynamic state of 3D genome
    Shinkai, Soya
    Onami, Shuichi
    Nakato, Ryuichiro
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2259 - 2269
  • [34] Improved accuracy assessment for 3D genome reconstructions
    Mark R. Segal
    Henrik L. Bengtsson
    BMC Bioinformatics, 19
  • [35] Unraveling the 3D genome of human malaria parasites
    Batugedara, Gayani
    Le Roch, Karine G.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2019, 90 : 144 - 153
  • [36] Pluripotency in 3D: genome organization in pluripotent cells
    Denholtz, Matthew
    Plath, Kathrin
    CURRENT OPINION IN CELL BIOLOGY, 2012, 24 (06) : 793 - 801
  • [37] The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions
    Wang, Yanli
    Song, Fan
    Zhang, Bo
    Zhang, Lijun
    Xu, Jie
    Kuang, Da
    Li, Daofeng
    Choudhary, Mayank N. K.
    Li, Yun
    Hu, Ming
    Hardison, Ross
    Wang, Ting
    Yue, Feng
    GENOME BIOLOGY, 2018, 19
  • [38] Enhancer Chromatin and 3D Genome Architecture Changes from Naive to Primed Human Embryonic Stem Cell States
    Battle, Stephanie L.
    Jayavelu, Naresh Doni
    Azad, Robert N.
    Hesson, Jennifer
    Ahmed, Faria N.
    Overbey, Eliah G.
    Zoller, Joseph A.
    Mathieu, Julie
    Ruohola-Baker, Hannele
    Ware, Carol B.
    Hawkins, R. David
    STEM CELL REPORTS, 2019, 12 (05): : 1129 - 1144
  • [39] Understanding Regulatory Mechanisms of Brain Function and Disease through 3D Genome Organization
    Liu, Weifang
    Zhong, Wujuan
    Chen, Jiawen
    Huang, Bo
    Hu, Ming
    Li, Yun
    GENES, 2022, 13 (04)
  • [40] Chromatin in 3D: progress and prospects for plants
    Liu, Chang
    Weigel, Detlef
    GENOME BIOLOGY, 2015, 16