Analysis methods for studying the 3D architecture of the genome

被引:94
|
作者
Ay, Ferhat [1 ,2 ]
Noble, William S. [1 ,3 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60661 USA
[3] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
来源
GENOME BIOLOGY | 2015年 / 16卷
基金
美国国家卫生研究院;
关键词
Genome architecture; Chromatin conformation capture; Three-dimensional genome; Three-dimensional modeling; HI-C DATA; CHROMOSOME CONFORMATION CAPTURE; CHROMATIN INTERACTIONS; TOPOLOGICAL DOMAINS; FUNCTIONAL-ORGANIZATION; INTERACTION FREQUENCY; 3-DIMENSIONAL GENOME; POISSON REGRESSION; DROSOPHILA GENOME; EPIGENOME BROWSER;
D O I
10.1186/s13059-015-0745-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The rapidly increasing quantity of genome-wide chromosome conformation capture data presents great opportunities and challenges in the computational modeling and interpretation of the three-dimensional genome. In particular, with recent trends towards higher-resolution high-throughput chromosome conformation capture (Hi-C) data, the diversity and complexity of biological hypotheses that can be tested necessitates rigorous computational and statistical methods as well as scalable pipelines to interpret these datasets. Here we review computational tools to interpret Hi-C data, including pipelines for mapping, filtering, and normalization, and methods for confidence estimation, domain calling, visualization, and three-dimensional modeling.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Genome-wide mapping and analysis of chromosome architecture
    Schmitt, Anthony D.
    Hu, Ming
    Ren, Bing
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2016, 17 (12) : 743 - 755
  • [22] Integrating transposable elements in the 3D genome
    Bousios, Alexandros
    Nutzmann, Hans-Wilhelm
    Buck, Dorothy
    Michieletto, Davide
    MOBILE DNA, 2020, 11 (01)
  • [23] Architectural proteins: regulators of 3D genome organization in cell fate
    Gomez-Diaz, Elena
    Corces, Victor G.
    TRENDS IN CELL BIOLOGY, 2014, 24 (11) : 703 - 711
  • [24] The 3D Genome in Transcriptional Regulation and Pluripotency
    Gorkin, David U.
    Leung, Danny
    Ren, Bing
    CELL STEM CELL, 2014, 14 (06) : 762 - 775
  • [25] How to build a cohesive genome in 3D
    Mccord, Rachel Patton
    NATURE, 2017, 551 (7678) : 38 - 40
  • [26] 3D genome and its disorganization in diseases
    Li, Ruifeng
    Liu, Yuting
    Hou, Yingping
    Gan, Jingbo
    Wu, Pengze
    Li, Cheng
    CELL BIOLOGY AND TOXICOLOGY, 2018, 34 (05) : 351 - 365
  • [27] The 3D Genome Structure of Single Cells
    Zhou, Tianming
    Zhang, Ruochi
    Ma, Jian
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 4, 2021, 4 : 21 - 41
  • [28] Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
    Tjong, Harianto
    Li, Wenyuan
    Kalhor, Reza
    Dai, Chao
    Hao, Shengli
    Gong, Ke
    Zhou, Yonggang
    Li, Haochen
    Zhou, Xianghong Jasmine
    Le Gros, Mark A.
    Larabell, Carolyn A.
    Chen, Lin
    Alber, Frank
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (12) : E1663 - E1672
  • [29] The 3DGD: a database of genome 3D structure
    Li, Chao
    Dong, Xiao
    Fan, Haiwei
    Wang, Chuan
    Ding, Guohui
    Li, Yixue
    BIOINFORMATICS, 2014, 30 (11) : 1640 - 1642
  • [30] Combining fluorescence imaging with Hi-C to study 3D genome architecture of the same single cell
    Lando, David
    Basu, Srinjan
    Stevens, Tim J.
    Riddell, Andy
    Wohlfahrt, Kai J.
    Cao, Yang
    Boucher, Wayne
    Leeb, Martin
    Atkinson, Liam P.
    Lee, Steven F.
    Hendrich, Brian
    Klenerman, Dave
    Laue, Ernest D.
    NATURE PROTOCOLS, 2018, 13 (05) : 1034 - 1061