Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation

被引:11
|
作者
Yadav, Swati [1 ]
Pandey, Rajesh K. [1 ]
Pandey, Prashant K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
finite difference method; fractional Sturm-Liouville operators; numerical analysis; tempered fractional calculus; DIFFERENTIAL-EQUATIONS; MOTION;
D O I
10.1002/fld.4901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the numerical approximation to solve regular tempered fractional Sturm-Liouville problem (TFSLP) using finite difference method. The tempered fractional differential operators considered here are of Caputo type. The numerically obtained eigenvalues are real, and the corresponding eigenfunctions are orthogonal. The obtained eigenfunctions work as basis functions of weighted Lebesgue integrable function spaceLw2(a,b). Further, the obtained eigenvalues and corresponding eigenfunctions are used to provide weak solution of the tempered fractional diffusion equation. Approximation and error bounds of the solution of the tempered fractional diffusion equation are provided.
引用
收藏
页码:610 / 627
页数:18
相关论文
共 50 条
  • [31] A Numerical Method for Time Fractional Diffusion Equation
    Song, Guangzhen
    Zhao, Weijia
    Huang, Jianfei
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY, 2016, 60 : 877 - 881
  • [32] NUMERICAL SOLUTION OF THE CONFORMABLE FRACTIONAL DIFFUSION EQUATION
    Yaslan, H. Cerdik
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (02) : 975 - 986
  • [33] Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative
    Le Dinh Long
    Ho Duy Binh
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Huu Can
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6194 - 6216
  • [34] Local discontinuous Galerkin methods for the time tempered fractional diffusion equation
    Sun, Xiaorui
    Li, Can
    Zhao, Fengqun
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [35] Existence of Concave Positive Solutions for Fractional Sturm-Liouville Boundary Value Problems with p-Laplacian
    Sun Ying
    Han Zhenlai
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10498 - 10503
  • [36] Second-order numerical methods for the tempered fractional diffusion equations
    Qiu, Zeshan
    Cao, Xuenian
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [37] An Implicit Numerical Method for the Riemann-Liouville Distributed-Order Space Fractional Diffusion Equation
    Zhang, Mengchen
    Shen, Ming
    Chen, Hui
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [38] The Dirichlet problem with tempered fractional derivatives
    Torres Ledesma, Cesar E.
    Nyamoradi, Nemat
    Bonilla, Manuel M.
    Rodriguez, Jesus A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [39] Numerical solution of Sturm-Liouville problems via Fer streamers
    Ramos, Alberto Gil C. P.
    Iserles, Arieh
    NUMERISCHE MATHEMATIK, 2015, 131 (03) : 541 - 565
  • [40] Uniqueness theorems for an impulsive Sturm-Liouville boundary value problem
    Ozkan, A. S.
    Keskin, B.
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (04) : 428 - 434