Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation

被引:11
|
作者
Yadav, Swati [1 ]
Pandey, Rajesh K. [1 ]
Pandey, Prashant K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
finite difference method; fractional Sturm-Liouville operators; numerical analysis; tempered fractional calculus; DIFFERENTIAL-EQUATIONS; MOTION;
D O I
10.1002/fld.4901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the numerical approximation to solve regular tempered fractional Sturm-Liouville problem (TFSLP) using finite difference method. The tempered fractional differential operators considered here are of Caputo type. The numerically obtained eigenvalues are real, and the corresponding eigenfunctions are orthogonal. The obtained eigenfunctions work as basis functions of weighted Lebesgue integrable function spaceLw2(a,b). Further, the obtained eigenvalues and corresponding eigenfunctions are used to provide weak solution of the tempered fractional diffusion equation. Approximation and error bounds of the solution of the tempered fractional diffusion equation are provided.
引用
收藏
页码:610 / 627
页数:18
相关论文
共 50 条
  • [1] Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals
    Zhang, Wenbiao
    Yi, Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] On partial fractional Sturm-Liouville equation and inclusion
    Charandabi, Zohreh Zeinalabedini
    Mohammadi, Hakimeh
    Rezapour, Shahram
    Masiha, Hashem Parvaneh
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [3] Variational Approach for Tempered Fractional Sturm–Liouville Problem
    Pandey P.K.
    Pandey R.K.
    Yadav S.
    Agrawal O.P.
    International Journal of Applied and Computational Mathematics, 2021, 7 (2)
  • [4] Exact and Numerical Solution of the Fractional Sturm-Liouville Problem with Neumann Boundary Conditions
    Klimek, Malgorzata
    Ciesielski, Mariusz
    Blaszczyk, Tomasz
    ENTROPY, 2022, 24 (02)
  • [5] On an inverse problem for a tempered fractional diffusion equation
    Nguyen, Anh Tuan
    Tuan, Nguyen Hoang
    Dai, Le Xuan
    Can, Nguyen Huu
    FILOMAT, 2024, 38 (19) : 6809 - 6827
  • [6] SPECTRAL EXPANSION FOR CONFORMABLE FRACTIONAL STURM-LIOUVILLE PROBLEM ON THE WHOLE LINE
    Allahverdi, Blender P.
    Tuna, Hueseyin
    Yalcinkaya, Yueksel
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (06): : 811 - 826
  • [7] Theory and numerical approaches of high order fractional Sturm-Liouville problems
    Houlari, Tahereh
    Dehghan, Mohammad
    Biazar, Jafar
    Nouri, Alireza
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1564 - 1579
  • [8] Existence of solutions for infinite systems of regular fractional Sturm-Liouville problems in the spaces of tempered sequences
    Prasad, K. Rajendra
    Khuddush, Mahammad
    Leela, D.
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (04) : 193 - 209
  • [9] Conformable fractional Sturm-Liouville equation and some existence results on time scales
    Gulsen, Tuba
    Yilmaz, Emrah
    Kemaloglu, Hikmet
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1348 - 1360
  • [10] High-order spectral collocation method using tempered fractional Sturm-Liouville eigenproblems
    Dahy, Sayed A.
    El-Hawary, H. M.
    Fahim, Alaa
    Aboelenen, Tarek
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08)