Parameters Optimization of Region growing Segmentation Based on Differential Evolution algorithm

被引:0
作者
Huang, Wanli [1 ]
机构
[1] Fujian Normal Univ, Coll Geog Sci, Fuzhou 350007, Peoples R China
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS | 2015年 / 15卷
关键词
Region Growing; Image Segmentation; Parameters Optimization; Differential Evolution; IMAGE SEGMENTATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image segmentation is the first step of GEOgraphical Based Image Analysis (GEOBIA). Because of no obvious mathematical relationship between the parameters of segmentation algorithm and the optimal segments, users select parameters by "trial and error" method, which is time-consuming and subjective. This paper used the differential evolution algorithm to automatically optimize the parameters of region growing algorithm. Because of differential evolution algorithm is a heuristic optimization method, use this method to select the parameters of segmentation for optimal segments is objective and efficient. The experiment result shown that use this method to select the optimal segmentation parameters can get the accuracy result and improve the efficiency.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 12 条
[1]  
Baatz M., 2000, Journal of Photogrammetry and Remote Sensing, V58
[2]   Automated parameterisation for multi-scale image segmentation on multiple layers [J].
Dragut, L. ;
Csillik, O. ;
Eisank, C. ;
Tiede, D. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 88 :119-127
[3]   Automated object-based classification of topography from SRTM data [J].
Dragut, Lucian ;
Eisank, Clemens .
GEOMORPHOLOGY, 2012, 141 :21-33
[4]   Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation [J].
Espindola, G. M. ;
Camara, G. ;
Reis, I. A. ;
Bins, L. S. ;
Monteiro, A. M. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (14) :3035-3040
[5]   A comparison of three image-object methods for the multiscale analysis of landscape structure [J].
Hay, GJ ;
Blaschke, T ;
Marceau, DJ ;
Bouchard, A .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2003, 57 (5-6) :327-345
[6]   Unsupervised image segmentation evaluation and refinement using a multi-scale approach [J].
Johnson, Brian ;
Xie, Zhixiao .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (04) :473-483
[7]   Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis [J].
Liu, Yong ;
Bian, Ling ;
Meng, Yuhong ;
Wang, Huanping ;
Zhang, Shifu ;
Yang, Yining ;
Shao, Xiaomin ;
Wang, Bo .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2012, 68 :144-156
[8]  
MEINEL G, 2004, INT ARCH PHOTOGRAM B, V35, P1097
[9]   Measures and Meta-Measures for the Supervised Evaluation of Image Segmentation [J].
Pont-Tuset, Jordi ;
Marques, Ferran .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :2131-2138
[10]   Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J].
Storn, R ;
Price, K .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) :341-359