Microstructural Analysis of Si-Ti-Fe Alloy Anode Materials for Li-ion Secondary Batteries

被引:6
|
作者
Chae, Jeong Eun [1 ,3 ]
Yang, Jun-Mo [1 ]
Park, Kyung Jin [1 ]
Yoo, Jung Ho [1 ]
Park, Yun Chang [1 ]
Sung, Min-Suk [2 ]
Yu, Hyun-Jong [3 ]
Kim, Sung-Soo [3 ]
机构
[1] Natl Nanofab Ctr, Measurement & Anal Div, Taejon 305806, South Korea
[2] Iljin Elect Co Ltd, Div Mat Dev Team, Ansan, South Korea
[3] Chungnam Natl Univ, Grad Sch Green Energy Technol, Dept Energy Storage & Convers, Taejon 305764, South Korea
来源
关键词
Li-ion battery; Si-Ti-Fe alloy anode; solidification TEM; microstructure; LITHIUM; INSERTION; PERFORMANCE; COMPOSITES;
D O I
10.3365/KJMM.2013.51.6.429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For improving anode materials in Li-ion batteries, the Si system has been noted by many researchers because it has higher energy density and capacity than the graphite anode material used currently. However, the life cycle of the Si anode tends to decrease due to the remarkable volume expansion which is caused by insertion of Li ions when the cell is charged. In this study, we controlled the size of active Si particles, which are dispersed in the inactive matrix, down to several tens of nm as active materials by adding heterogeneous elements. To understand the reaction mechanism of active Si dispersed in the inactive matrix, we analyzed the microstructure of the Si-Ti-Fe alloy using high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The volume expansion behavior was improved by employing the TiFeSi2 matrix and refining the active Si particle size, and life performance of the Li-ion batteries was enhanced.
引用
收藏
页码:429 / 436
页数:8
相关论文
共 50 条
  • [21] Nanocrystalline Ag-Fe-Sn anode materials for Li-ion batteries
    Yin, JT
    Wada, M
    Tanase, S
    Sakai, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) : A583 - A589
  • [22] Improvement of cyclability of Si as anode for Li-ion batteries
    Ding, Ning
    Xu, Jing
    Yao, Yaxuan
    Wegner, Gerhard
    Lieberwirth, Ingo
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 644 - 651
  • [23] Metal dicarboxylates as anode materials for Li-ion batteries
    Teusner, Matthew
    Mata, Jitendra
    Johannessen, Bernt
    Stewart, Glen
    Cadogan, Sean
    Sharma, Neeraj
    MATERIALS ADVANCES, 2023, 4 (15): : 3224 - 3238
  • [24] Development of nanocomposites for anode materials in Li-ion batteries
    Ochs, Rolf
    Szabo, Dorothee Vinga
    Schlabach, Sabine
    Becker, Sebastian
    Indris, Sylvio
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (02): : 471 - 473
  • [25] Hollow Nanostructured Anode Materials for Li-Ion Batteries
    Liu, Jun
    Xue, Dongfeng
    NANOSCALE RESEARCH LETTERS, 2010, 5 (10): : 1525 - 1534
  • [26] Hollow Nanostructured Anode Materials for Li-Ion Batteries
    Jun Liu
    Dongfeng Xue
    Nanoscale Research Letters, 5
  • [27] Supersonic cold-sprayed Si composite alloy as anode for Li-ion batteries
    Lou, Ding
    Hong, Haiping
    Ellingsen, Marius
    Hrabe, Rob
    APPLIED PHYSICS LETTERS, 2023, 122 (02)
  • [28] A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries
    Xuan Gui
    Guodong Hao
    Weifeng Jiang
    Ionics, 2020, 26 : 1081 - 1099
  • [29] A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries
    Gui, Xuan
    Hao, Guodong
    Jiang, Weifeng
    IONICS, 2020, 26 (03) : 1081 - 1099
  • [30] Performance and Safety Characteristics of Si-Based Anode Materials for Li-Ion Batteries
    Yanagida, M.
    Mukai, T.
    Ikeuchi, Y.
    Sakamoto, T.
    Yamashita, N.
    Tanaka, H.
    18TH INTERNATIONAL MEETING ON LITHIUM BATTERIES (IMLB 2016), 2016, 73 (01): : 137 - 140