Orthonormal bases of regular wavelets in spaces of homogeneous type

被引:66
作者
Auscher, Pascal [1 ,2 ]
Hytonen, Tuomas [3 ]
机构
[1] Univ Paris Sud, UMR 8628, Math Lab, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Geometrically doubling quasi-metric space; Space of homogeneous type; Spline function; Wavelet; Orthonormal basis; Dyadic cube; Random geometric construction; T(1) theorem; CALDERON-ZYGMUND OPERATORS; HARDY-SPACES; CONSTRUCTION; ONDELETTES; H-1;
D O I
10.1016/j.acha.2012.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Adapting the recently developed randomized dyadic structures, we introduce the notion of spline function in geometrically doubling quasi-metric spaces. Such functions have interpolation and reproducing properties as the linear splines in Euclidean spaces. They also have Holder regularity. This is used to build an orthonormal basis of Holder-continuous wavelets with exponential decay in any space of homogeneous type. As in the classical theory, wavelet bases provide a universal Calderon reproducing formula to study and develop function space theory and singular integrals. We discuss the examples of L-p spaces, BMO and apply this to a proof of the T(1) theorem. As no extra condition (like 'reverse doubling', 'small boundary' of balls, etc.) on the space of homogeneous type is required, our results extend a long line of works on the subject. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:266 / 296
页数:31
相关论文
共 50 条
  • [31] Spectral models for orthonormal wavelets and related algorithms
    Gomez-Cubillo, F.
    Suchanecki, Z.
    Villullas, S.
    [J]. 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [32] Products of functions in BMO and H1 spaces on spaces of homogeneous type
    Feuto, Justin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 610 - 620
  • [33] Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Alvarado, Ryan
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    [J]. STUDIA MATHEMATICA, 2023, 268 (02) : 121 - 166
  • [34] A Complete Real-Variable Theory of Hardy Spaces on Spaces of Homogeneous Type
    Ziyi He
    Yongsheng Han
    Ji Li
    Liguang Liu
    Dachun Yang
    Wen Yuan
    [J]. Journal of Fourier Analysis and Applications, 2019, 25 : 2197 - 2267
  • [35] The Campanato, Morrey and Holder spaces on spaces of homogeneous type
    Nakai, Eiichi
    [J]. STUDIA MATHEMATICA, 2006, 176 (01) : 1 - 19
  • [36] Some of Commutators on Spaces of Homogeneous Type
    邱道文
    [J]. NortheasternMathematicalJournal, 2000, (02) : 215 - 224
  • [37] Discrete Approximation of Spaces of Homogeneous Type
    Hugo Aimar
    Marilina Carena
    Bibiana Iaffei
    [J]. Journal of Geometric Analysis, 2009, 19 : 1 - 18
  • [38] CARLESON MEASURES ON SPACES OF HOMOGENEOUS TYPE
    GADBOIS, SC
    SLEDD, WT
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) : 841 - 862
  • [39] Discrete Approximation of Spaces of Homogeneous Type
    Aimar, Hugo
    Carena, Marilina
    Iaffei, Bibiana
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (01) : 1 - 18
  • [40] The Boundedness of Calderon-Zygmund Operators on Lipschitz Spaces Over Spaces of Homogeneous Type
    Zheng, Taotao
    Li, Hongliang
    Tao, Xiangxing
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 653 - 669