Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease

被引:94
作者
Coughlan, Melinda T. [1 ,2 ,3 ]
Sharma, Kumar [4 ,5 ,6 ]
机构
[1] Baker Int Diabet Inst IDI, Heart & Diabet Inst, Melbourne, Vic, Australia
[2] Monash Univ, Dept Med, Cent Clin Sch, Alfred Med Res & Educ Precinct, Melbourne, Vic, Australia
[3] Monash Univ, Alfred Med Res & Educ Precinct, Dept Epidemiol & Prevent Med, Melbourne, Vic, Australia
[4] Univ Calif San Diego, Inst Metabol Med, Div Nephrol Hypertens, Ctr Renal Translat Med, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Med, Div Med Genet, La Jolla, CA 92093 USA
[6] Vet Affairs San Diego Healthcare Syst, Div Nephrol Hypertens, La Jolla, CA USA
关键词
diabetic nephropathy; mitochondria; oxidative stress; OXIDATIVE STRESS; HYDROGEN-PEROXIDE; NADPH OXIDASE; SUPEROXIDE-PRODUCTION; MOLECULAR-MECHANISMS; TRANSCRIPTION FACTOR; AFFERENT ARTERIOLE; NITRIC-OXIDE; CANCER-CELLS; RAT-KIDNEY;
D O I
10.1016/j.kint.2016.02.043
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The paradigm that high glucose drives overproduction of superoxide from mitochondria as a unifying theory to explain end organ damage in diabetes complications has been tightly held for more than a decade. With the recent development of techniques and probes to measure the production of distinct reactive oxygen species (ROS) in vivo, this widely held dogma is now being challenged with the emerging view that specific ROS moieties are essential for the function of specific intracellular signaling pathways and represent normal mitochondrial function. This review will provide a balanced overview of the dual nature of ROS, detailing current evidence for ROS overproduction in diabetic kidney disease, with a focus on cell types and sources of ROS. The technical aspects of measurement of mitochondrial ROS, both in isolated mitochondria and emerging in vivo methods will be discussed. The counterargument, that mitochondrial ROS production is reduced in diabetic complications, is consistent with a growing recognition that stimulation of mitochondrial biogenesis and oxidative phosphorylation activity reduces inflammation and fibrosis. It is clear that there is an urgent need to fully characterize ROS production paying particular attention to spatiotemporal aspects and to factor in the relevance of ROS in the regulation of cellular signaling in the pathogenesis of diabetic kidney disease. With improved tools and real-time imaging capacity, a greater understanding of the complex role of ROS will be able to guide novel therapeutic regimens.
引用
收藏
页码:272 / 279
页数:8
相关论文
共 81 条
[21]   Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals [J].
Fang, Huaqiang ;
Chen, Min ;
Ding, Yi ;
Shang, Wei ;
Xu, Jiejia ;
Zhang, Xing ;
Zhang, Wanrui ;
Li, Kaitao ;
Xiao, Yao ;
Gao, Feng ;
Shang, Shujiang ;
Li, Jing-Chao ;
Tian, Xiao-Li ;
Wang, Shi-Qiang ;
Zhou, Jingsong ;
Weisleder, Noah ;
Ma, Jianjie ;
Ouyang, Kunfu ;
Chen, Ju ;
Wang, Xianhua ;
Zheng, Ming ;
Wang, Wang ;
Zhang, Xiuqin ;
Cheng, Heping .
CELL RESEARCH, 2011, 21 (09) :1295-1304
[22]   Involvement of Endoplasmic Reticulum Stress in Albuminuria Induced Inflammasome Activation in Renal Proximal Tubular Cells [J].
Fang, Li ;
Xie, Da ;
Wu, Xian ;
Cao, Hongdi ;
Su, Weifang ;
Yang, Junwei .
PLOS ONE, 2013, 8 (08)
[23]   Oxidative stress as a major culprit in kidney disease in diabetes [J].
Forbes, Josephine M. ;
Coughlan, Melinda T. ;
Cooper, Mark E. .
DIABETES, 2008, 57 (06) :1446-1454
[24]   MECHANISMS OF DIABETIC COMPLICATIONS [J].
Forbes, Josephine M. ;
Cooper, Mark E. .
PHYSIOLOGICAL REVIEWS, 2013, 93 (01) :137-188
[25]   Regulation of Protein Tyrosine Phosphatase Oxidation in Cell Adhesion and Migration [J].
Frijhoff, Jeroen ;
Dagnell, Markus ;
Godfrey, Rinesh ;
Ostman, Arne .
ANTIOXIDANTS & REDOX SIGNALING, 2014, 20 (13) :1994-2010
[26]   SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2Akita diabetic mice [J].
Fujita, Hiroki ;
Fujishima, Hiromi ;
Takahashi, Keiko ;
Sato, Takehiro ;
Shimizu, Tatsunori ;
Morii, Tsukasa ;
Shimizu, Takahiko ;
Shirasawa, Takuji ;
Qi, Zhonghua ;
Breyer, Matthew D. ;
Harris, Raymond C. ;
Yamada, Yuichiro ;
Takahashi, Takamune .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2012, 61 (12) :1714-1724
[27]   Oxidative Stress and Diabetic Complications [J].
Giacco, Ferdinando ;
Brownlee, Michael .
CIRCULATION RESEARCH, 2010, 107 (09) :1058-1070
[28]   Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications [J].
Giorgi, Carlotta ;
Missiroli, Sonia ;
Patergnani, Simone ;
Duszynski, Jerzy ;
Wieckowski, Mariusz R. ;
Pinton, Paolo .
ANTIOXIDANTS & REDOX SIGNALING, 2015, 22 (12) :995-1019
[29]   Dynamic optical imaging of metabolic and NADPH oxidase-derived superoxide in live mouse brain using fluorescence lifetime unmixing [J].
Hall, David J. ;
Han, Sung-Ho ;
Chepetan, Andre M. ;
Inui, Edny G. ;
Rogers, Mike ;
Dugan, Laura L. .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2012, 32 (01) :23-32
[30]   High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells [J].
Han, HJ ;
Lee, YJ ;
Park, SH ;
Lee, JH ;
Taub, M .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2005, 288 (05) :F988-F996