Asymptotic theory for rough fractional Vasicek models

被引:25
作者
Xiao, Weilin [1 ]
Yu, Jun [2 ]
机构
[1] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
[2] Singapore Management Univ, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Least squares; Roughness; Strong consistency; Asymptotic distribution; STOCHASTIC VOLATILITY; LONG-MEMORY; LIMIT THEORY;
D O I
10.1016/j.econlet.2019.01.020
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper extends the asymptotic theory for the fractional Vasicek model developed in Xiao and Yu (2018) from the case where H is an element of (1/2, 1) to where H is an element of (0, 1/2). It is found that the asymptotic theory of the persistence parameter (kappa) critically depends on the sign of kappa. Moreover, if kappa > 0, the asymptotic distribution for the estimator of kappa is different when H is an element of (0, 1/2) from that when H is an element of (1/2, 1). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 29
页数:4
相关论文
共 22 条
[1]  
Arvanitis S., 2018, J TIME SER ANAL
[2]   Pricing under rough volatility [J].
Bayer, Christian ;
Friz, Peter ;
Gatheral, Jim .
QUANTITATIVE FINANCE, 2016, 16 (06) :887-904
[3]   Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2) [J].
Cheridito, P ;
Nualart, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06) :1049-1081
[4]  
Cheridito P, 2003, ELECTRON J PROBAB, V8, P1
[5]   Estimation and pricing under long-memory stochastic volatility [J].
Chronopoulou A. ;
Viens F.G. .
Annals of Finance, 2012, 8 (2-3) :379-403
[6]   Stochastic volatility and option pricing with long-memory in discrete and continuous time [J].
Chronopoulou, Alexandra ;
Viens, Frederi G. .
QUANTITATIVE FINANCE, 2012, 12 (04) :635-649
[7]   Affine fractional stochastic volatility models [J].
F. Comte ;
L. Coutin ;
E. Renault .
Annals of Finance, 2012, 8 (2-3) :337-378
[8]   Long memory in continuous-time stochastic volatility models [J].
Comte, F ;
Renault, E .
MATHEMATICAL FINANCE, 1998, 8 (04) :291-323
[9]   Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes [J].
El Machkouri, Mohamed ;
Es-Sebaiy, Khalifa ;
Ouknine, Youssef .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (03) :329-341
[10]   MAXIMUM LIKELIHOOD ESTIMATION FOR CONTINUOUS-TIME STOCHASTIC-PROCESSES [J].
FEIGIN, PD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (04) :712-736