A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback

被引:18
作者
Chen, Tong [1 ]
Guo, Jiajia [1 ]
Jin, Shi [1 ]
Wen, Chao-Kai [2 ]
Li, Geoffrey Ye [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP) | 2019年
基金
美国国家科学基金会;
关键词
quantization; massive MIMO; CSI feedback; deep learning; offset network;
D O I
10.1109/globalsip45357.2019.8969557
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In massive multiple-input multiple-output (MIMO) systems, channel state information (CSI) needs feeding back to the base station (BS) by user equipment (UE) to attain the potential benefits of massive MIMO. But the large number of antennas at the BS causes a huge feedback overhead, thereby making it prohibitive to realize CSI feedback in massive MIMO. Deep leaning-based (DL) compressive sensing methods for CSI feedback can potentially reduce the overhead significantly. However, without quantization, a data-hearing bitstream for transmission cannot be produced at the UE. In this paper, we propose a novel quantization framework and training strategy for DL-based CSI feedback, which not only makes the current CSI feedback network applicable in real communication systems but also minimizes the introduced quantization distortion to improve the reconstruction quality. Experimental results demonstrate that the proposed quantization method performs well and is robust to quantization errors.
引用
收藏
页数:5
相关论文
共 13 条
[1]  
Cai JR, 2018, IEEE IMAGE PROC, P450, DOI 10.1109/ICIP.2018.8451411
[2]   An Efficient Deep Quantized Compressed Sensing Coding Framework of Natural Images [J].
Cui, Wenxue ;
Jiang, Feng ;
Gao, Xinwei ;
Zhang, Shengping ;
Zhao, Debin .
PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, :1777-1785
[3]   LSTM: A Search Space Odyssey [J].
Greff, Klaus ;
Srivastava, Rupesh K. ;
Koutnik, Jan ;
Steunebrink, Bas R. ;
Schmidhuber, Juergen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (10) :2222-2232
[4]  
Guo J., 2019, CONVOLUTIONAL NEURAL
[5]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[6]   Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback [J].
Liu, Zhenyu ;
Zhang, Lin ;
Ding, Zhi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :889-892
[7]   MIMO Channel Information Feedback Using Deep Recurrent Network [J].
Lu, Chao ;
Xu, Wei ;
Shen, Hong ;
Zhu, Jun ;
Wang, Kezhi .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (01) :188-191
[8]   MASSIVE MIMO: AN INTRODUCTION [J].
Marzetta, Thomas L. .
BELL LABS TECHNICAL JOURNAL, 2015, 20 :11-22
[9]   A Deep Learning Framework of Quantized Compressed Sensing for Wireless Neural Recording [J].
Sun, Biao ;
Feng, Hui ;
Chen, Kefan ;
Zhu, Xinshan .
IEEE ACCESS, 2016, 4 :5169-5178
[10]  
Vincent Pascal, 2008, P 25 INT C MACHINE L, P1096