Effects of activated carbon treatment on Li4Ti5O12 anode material synthesis for lithium-ion batteries

被引:7
作者
Subhan, Achmad [1 ]
Oemry, Ferensa [1 ]
Khusna, Siti Nailul [2 ]
Hastuti, Erna [2 ]
机构
[1] Indonesian Inst Sci LIPI, Res Ctr Phys, Komplek Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
[2] UIN Maulana Malik Ibrahim, Dept Phys, Jl Gajayana 10, Malang 65144, East Java, Indonesia
关键词
Lithium-ion battery; Li4Ti5O12; Rutile TiO2; Activated carbon; Coconut shell; OBSERVED INTEGRATED-INTENSITIES; INDIVIDUAL CRYSTALLINE PHASES; CHEMICAL-COMPOSITION DATA; COCONUT SHELL CHARS; ELECTROCHEMICAL PROPERTIES; DIRECT DERIVATION; WEIGHT FRACTIONS; DOPED LI4TI5O12; LI; PERFORMANCE;
D O I
10.1007/s11581-018-2633-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conventional solid-state reaction method that is widely adopted to synthesize Li4Ti5O12 (LTO) typically generates rutile TiO2 phase at calcination temperature range between 700 and 900 degrees C in which two competitive reactions between anatase-to-rutile TiO2 and Li2TiO3-to-Li4Ti5O12 formations occur simultaneously. This study investigates the effectiveness of coconut shell-based activated carbon treatment to eliminate the formation of anatase-to-rutile TiO2. X-ray diffraction (XRD) results indicate that mixing LTO precursors with 3, 6, and 10wt% activated carbon prior to calcination process could reduce the amount of rutile TiO2 phase in LTO down to 6.9, 4.6, and 3.5wt%, respectively, versus 9.1wt% in untreated LTO. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements show that LTO pretreated with 10wt% AC has discharge capacity of 168.35mAhg(-1) and also Li+-ion diffusion rate of 1.2x10(-13)cm(2)s(-1). These values are comparably higher than those of untreated LTO that gains lower discharge capacity of 134.93mAhg(-1) and Li+-ion diffusion rate of 6.9x10(-14)cm(2)s(-1). This improvement could be attributed to the suppression of anatase-to-rutile TiO2 formation during calcination process.
引用
收藏
页码:1025 / 1034
页数:10
相关论文
共 50 条
  • [1] The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling
    An, Seong Jin
    Li, Jianlin
    Daniel, Claus
    Mohanty, Debasish
    Nagpure, Shrikant
    Wood, David L., III
    [J]. CARBON, 2016, 105 : 52 - 76
  • [2] Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy
    Bach, S.
    Pereira-Ramos, J. P.
    Willman, P.
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (17) : 4952 - 4959
  • [3] Bard A. J., 2001, ELECTROCHEMICAL METH
  • [4] Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature
    Baudrin, E.
    Cassaignon, S.
    Koesch, M.
    Jolivet, J. -P.
    Dupont, L.
    Tarascon, J. -M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) : 337 - 342
  • [5] Coates J, 2000, CITESEER
  • [6] Review on recent progress of nanostructured anode materials for Li-ion batteries
    Goriparti, Subrahmanyam
    Miele, Ermanno
    De Angelis, Francesco
    Di Fabrizio, Enzo
    Zaccaria, Remo Proietti
    Capiglia, Claudio
    [J]. JOURNAL OF POWER SOURCES, 2014, 257 : 421 - 443
  • [7] Production of activated carbon from coconut shell: Optimization using response surface methodology
    Gratuito, M. K. B.
    Panyathanmaporn, T.
    Chumnanklang, R. -A.
    Sirinuntawittaya, N.
    Dutta, A.
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (11) : 4887 - 4895
  • [8] Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators
    Guerfi, A
    Sévigny, S
    Lagacé, M
    Hovington, P
    Kinoshita, K
    Zaghib, K
    [J]. JOURNAL OF POWER SOURCES, 2003, 119 : 88 - 94
  • [9] Li4Ti5O12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li-Ion Battery Electrodes
    Hao, Xiaoguang
    Bartlett, Bart M.
    [J]. ADVANCED ENERGY MATERIALS, 2013, 3 (06) : 753 - 761
  • [10] Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material
    Huang, Qian
    Yang, Zhen
    Mao, Jian
    [J]. IONICS, 2017, 23 (04) : 803 - 811