CHEBYSHEV, LEGENDRE, HERMITE AND OTHER ORTHONORMAL POLYNOMIALS IN D DIMENSIONS

被引:0
|
作者
Doria, Mauro M. [1 ]
Coelho, Rodrigo C., V [1 ,2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Fis Solidos, BR-21941972 Rio De Janeiro, Brazil
[2] ETH, Inst Bldg Mat, Computat Phys Engn Mat, HIF, Schafmattstr 6, CH-8093 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
orthogonal polynomials; tensor algebra; statistical physics;
D O I
10.1016/S0034-4877(18)30040-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a set of polynomials orthonormal under a general weight which are symmetrical tensors in D-dimensional Euclidean space. The D-dimensional Hermite polynomials are shown to be a particular case of the present ones for the case of a Gaussian weight. We explicitly determine the parameters of the first five polynomials (N from 0 to 4) and conjecture that our procedure can be generalized to N-th order because of the remarkable match found between the orthonormality conditions and the symmetrical tensors in the D-dimensional Euclidean space. In this way we obtain generalizations of the Legendre and of the Chebyshev polynomials in D dimensions that reduce to the respective well-known orthonormal polynomials in D = 1 dimensions. We also obtain new D-dimensional polynomials orthonormal under weights of interest to physics, such as the Fermi-Dirac, Bose-Einstein, graphene equilibrium distribution functions and the Yukawa potential.
引用
收藏
页码:243 / 271
页数:29
相关论文
共 50 条
  • [41] Multiple root finder algorithm for Legendre and Chebyshev polynomials via Newton's method
    Barrera-Figueroa, Victor
    Sosa-Pedroza, Jorge
    Lopez-Bonilla, Jose
    ANNALES MATHEMATICAE ET INFORMATICAE, 2006, 33 : 3 - 13
  • [42] Mixed Spectral Method for Heat Transfer Using Generalised Hermite Functions and Legendre Polynomials
    Wang, Tian-Jun
    Zhang, Chao
    Zhang, Qiong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (04) : 448 - 465
  • [43] On Convoluted Forms of Multivariate Legendre-Hermite Polynomials with Algebraic Matrix Based Approach
    Riyasat, Mumtaz
    Alali, Amal S.
    Wani, Shahid Ahmad
    Khan, Subuhi
    MATHEMATICS, 2024, 12 (17)
  • [44] ON THE q-HERMITE POLYNOMIALS AND THEIR RELATIONSHIP WITH SOME OTHER FAMILIES OF ORTHOGONAL POLYNOMIALS
    Szablowski, Pawel J. y
    DEMONSTRATIO MATHEMATICA, 2013, 46 (04) : 679 - 708
  • [45] Linearization of A/D converters by dither and Chebyshev polynomials
    Adamo, F
    Andria, G
    Attivissimo, F
    Giaquinto, N
    MEASUREMENT, 2004, 35 (02) : 123 - 130
  • [46] Hermite and Laguerre 2D polynomials
    Wünsche, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 665 - 678
  • [47] d-orthogonality of Hermite type polynomials
    Lamiri, I.
    Ouni, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 24 - 43
  • [48] FACTORING VARIANTS OF CHEBYSHEV POLYNOMIALS WITH MINIMAL POLYNOMIALS OF cos(2π/d)
    Wolfram, D. A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) : 448 - 457
  • [49] NUMERICAL SOLUTION OF INTEGRAL EQUATION USING GALERKIN METHOD WITH HERMITE, CHEBYSHEV & ORTHOGONAL POLYNOMIALS
    Ahmad, Najmuddin
    Singh, Balmukund
    JOURNAL OF SCIENCE AND ARTS, 2020, (01): : 35 - 42
  • [50] A Conditional Selection of Orthogonal Legendre/Chebyshev Polynomials As a Novel Fingerprint Orientation Estimation Smoothing Method
    Tashk, Ashkan
    Helfroush, Mohammad Sadegh
    Dehghani, Mohammad Javad
    2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009), 2009, : 59 - 63