Interactive Visualization of Streaming Data with Kernel Density Estimation

被引:0
|
作者
Lampe, Ove Daae [1 ]
Hauser, Helwig [1 ]
机构
[1] Univ Bergen, N-5020 Bergen, Norway
来源
IEEE PACIFIC VISUALIZATION SYMPOSIUM 2011 | 2011年
关键词
I.3.3 [Computing Methodologies]: Computer Graphics; Picture/Image Generation G.3 [Mathematics of Computing]: Probability and Statistics; Time series analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss the extension and integration of the statistical concept of Kernel Density Estimation (KDE) in a scatterplot-like visualization for dynamic data at interactive rates. We present a line kernel for representing streaming data, we discuss how the concept of KDE can be adapted to enable a continuous representation of the distribution of a dependent variable of a 2D domain. We propose to automatically adapt the kernel bandwith of KDE to the viewport settings, in an interactive visualization environment that allows zooming and panning. We also present a GPU-based realization of KDE that leads to interactive frame rates, even for comparably large datasets. Finally, we demonstrate the usefulness of our approach in the context of three application scenarios - one studying streaming ship traffic data, another one from the oil & gas domain, where process data from the operation of an oil rig is streaming in to an on-shore operational center, and a third one studying commercial air traffic in the US spanning 1987 to 2008.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 50 条
  • [21] Improved Entropy Rate Estimation in Physiological Data
    Lake, D. E.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 1463 - 1466
  • [22] Missing-Data Nonparametric Coherency Estimation
    Haley, C.
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1704 - 1708
  • [23] Network Estimation From Point Process Data
    Mark, Benjamin
    Raskutti, Garvesh
    Willett, Rebecca
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 2953 - 2975
  • [24] FuseAD: Unsupervised Anomaly Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning Models
    Munir, Mohsin
    Siddiqui, Shoaib Ahmed
    Chattha, Muhammad Ali
    Dengel, Andreas
    Ahmed, Sheraz
    SENSORS, 2019, 19 (11)
  • [25] Parameter estimation in a generalized discrete-time model of density dependence
    Leo Polansky
    Perry de Valpine
    James O. Lloyd-Smith
    Wayne M. Getz
    Theoretical Ecology, 2008, 1 : 221 - 229
  • [26] Parameter estimation in a generalized discrete-time model of density dependence
    Polansky, Leo
    de Valpine, Perry
    Lloyd-Smith, James O.
    Getz, Wayne M.
    THEORETICAL ECOLOGY, 2008, 1 (04) : 221 - 229
  • [27] ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS OF TIME SERIES DATA
    Knape, Jonas
    ECOLOGY, 2008, 89 (11) : 2994 - 3000
  • [28] Phenology Estimation From Meteosat Second Generation Data
    Sobrino, Jose A.
    Julien, Yves
    Soria, Guillem
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) : 1653 - 1659
  • [29] Analysis of the hydrometeorological data using the Fractal dimension estimation
    Jura, Jakub
    Novak, Martin
    2017 21ST INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2017, : 137 - 142
  • [30] Sense2Vec: Representation and Visualization of Multivariate Sensory Time Series Data
    Abdella, Alla
    Uysal, Ismail
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 7972 - 7988