Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons

被引:22
|
作者
Liang, Jingyao [1 ]
Liu, Xiaoyan [2 ]
Zheng, Jianquan [2 ]
Yu, Shengyuan [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Neurol, Beijing 100853, Peoples R China
[2] Beijing Inst Pharmacol & Toxicol, Dept Biochem Pharmacol, Beijing 100850, Peoples R China
来源
MOLECULAR PAIN | 2013年 / 9卷
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Amitriptyline; Na(v)1.9; Patch clamp; Trigeminal ganglion; Pain; SODIUM-CHANNEL NA(V)1.9; NEUROPATHIC PAIN; NA+ CHANNELS; DEPENDENT BLOCK; EXPRESSION; MIGRAINE; SNS; BRAIN; ANTIDEPRESSANTS; ELECTROGENESIS;
D O I
10.1186/1744-8069-9-31
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Amitriptyline (AMI) is tricyclic antidepressant that has been widely used to manage various chronic pains such as migraines. Its efficacy is attributed to its blockade of voltage-gated sodium channels (VGSCs). However, the effects of AMI on the tetrodotoxin-resistant (TTX-r) sodium channel Na(v)1.9 currents have been unclear to present. Results: Using a whole-cell patch clamp technique, this study showed that AMI efficiently inhibited Nav1.9 currents in a concentration-dependent manner and had an IC50 of 15.16 mu M in acute isolated trigeminal ganglion (TG) neurons of the rats. 10 mu M AMI significantly shifted the steady-state inactivation of Na(v)1.9 channels in the hyperpolarizing direction without affecting voltage-dependent activation. Surprisingly, neither 10 nor 50 mu M AMI caused a use-dependent blockade of Na(v)1.9 currents elicited by 60 pulses at 1 Hz. Conclusion: These data suggest that AMI is a state-selective blocker of Nav1.9 channels in rat nociceptive trigeminal neurons, which likely contributes to the efficacy of AMI in treating various pains, including migraines.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The presence and role of the tetrodotoxin-resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons
    Fang, X
    Djouhri, L
    Black, JA
    Dib-Hajj, SD
    Waxman, SG
    Lawson, SN
    JOURNAL OF NEUROSCIENCE, 2002, 22 (17): : 7425 - 7433
  • [2] Contribution of the tetrodotoxin-resistant voltage-gated sodium channel Nav1.9 to sensory transmission and nociceptive behavior
    Priest, BT
    Murphy, BA
    Lindia, JA
    Diaz, C
    Abbadie, C
    Ritter, AM
    Liberator, P
    Iyer, LM
    Kash, SF
    Kohler, MG
    Kaczorowski, GJ
    MacIntyre, DE
    Martin, WJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (26) : 9382 - 9387
  • [3] Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons
    Rugiero, F
    Mistry, M
    Sage, D
    Black, JA
    Waxman, SG
    Crest, M
    Clerc, N
    Delmas, P
    Gola, M
    JOURNAL OF NEUROSCIENCE, 2003, 23 (07): : 2715 - 2725
  • [4] Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Nav1.9, in mouse dorsal root ganglion neurons
    Maruyama, H
    Yamamoto, M
    Matsutomi, T
    Zheng, TX
    Nakata, Y
    Wood, JN
    Ogata, N
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2004, 449 (01): : 76 - 87
  • [5] Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Nav1.9, in mouse dorsal root ganglion neurons
    Hiroshi Maruyama
    Mitsuko Yamamoto
    Tomoya Matsutomi
    Taixing Zheng
    Yoshihiro Nakata
    John N. Wood
    Nobukuni Ogata
    Pflügers Archiv, 2004, 449 : 76 - 87
  • [6] Differential expression of tetrodotoxin-resistant sodium channels NaV1.8 and NaV1.9 in normal and inflamed rats
    Coggeshall, RE
    Tate, S
    Carlton, SM
    NEUROSCIENCE LETTERS, 2004, 355 (1-2) : 45 - 48
  • [7] Tetrodotoxin-resistant voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed in the retina
    O'Brien, Brendan J.
    Caldwell, John H.
    Ehring, George R.
    O'Brien, Keely M. Bumsted
    Luo, Songjiang
    Levinson, S. Rock
    JOURNAL OF COMPARATIVE NEUROLOGY, 2008, 508 (06) : 940 - 951
  • [8] Activation of Tetrodotoxin-Resistant Sodium Channel NaV1.9 in Rat Primary Sensory Neurons Contributes to Melittin-Induced Pain Behavior
    Yao-Qing Yu
    Zhen-Yu Zhao
    Xue-Feng Chen
    Fang Xie
    Yan Yang
    Jun Chen
    NeuroMolecular Medicine, 2013, 15 : 209 - 217
  • [9] Activation of Tetrodotoxin-Resistant Sodium Channel NaV1.9 in Rat Primary Sensory Neurons Contributes to Melittin-Induced Pain Behavior
    Yu, Yao-Qing
    Zhao, Zhen-Yu
    Chen, Xue-Feng
    Xie, Fang
    Yang, Yan
    Chen, Jun
    NEUROMOLECULAR MEDICINE, 2013, 15 (01) : 209 - 217
  • [10] PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins
    Rush, AM
    Waxman, SG
    BRAIN RESEARCH, 2004, 1023 (02) : 264 - 271