Anti-periodic solutions for nonlinear evolution equations
被引:9
|
作者:
Cheng, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Aviat Univ Air Force, Fundamental Dept, Changchun 130022, Peoples R China
Jilin Univ, Inst Math, Changchun 130012, Peoples R ChinaAviat Univ Air Force, Fundamental Dept, Changchun 130022, Peoples R China
Cheng, Yi
[1
,2
]
Cong, Fuzhong
论文数: 0引用数: 0
h-index: 0
机构:
Aviat Univ Air Force, Fundamental Dept, Changchun 130022, Peoples R ChinaAviat Univ Air Force, Fundamental Dept, Changchun 130022, Peoples R China
Cong, Fuzhong
[1
]
Hua, Hongtu
论文数: 0引用数: 0
h-index: 0
机构:
Aviat Univ Air Force, Fundamental Dept, Changchun 130022, Peoples R China
Jilin Univ, Inst Math, Changchun 130012, Peoples R ChinaAviat Univ Air Force, Fundamental Dept, Changchun 130022, Peoples R China
Hua, Hongtu
[1
,2
]
机构:
[1] Aviat Univ Air Force, Fundamental Dept, Changchun 130022, Peoples R China
[2] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
In this paper, we use the homotopy method to establish the existence and uniqueness of anti-periodic solutions for the nonlinear anti-periodic problem {(x) over dot + A(t,x) + Bx = f(t) a.e. t is an element of R, {x(t + T) = -x(t), where A(t,x) is a nonlinear map and B is a bounded linear operator from R-N to R-N. Sufficient conditions for the existence of the solution set are presented. Also, we consider the nonlinear evolution problems with a perturbation term which is multivalued. We show that, for this problem, the solution set is nonempty and weakly compact in W-1,W-2(I, R-N) for the case of convex valued perturbation and prove the existence theorems of anti-periodic solutions for the nonconvex case. All illustrative examples are provided.
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Lv, Xiang
Yan, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Univ Helsinki, Dept Math & Stat, Rolf Nevanlinna Inst, FIN-00014 Helsinki, FinlandAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Yan, Ping
Liu, Daojin
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
机构:Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
Chen, Yuqing
Nieto, Juan J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
Nieto, Juan J.
O'Regan, Donal
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain