Computational study of CO2 absorption in aqueous and non-aqueous solutions using MEA

被引:8
|
作者
Zhang, Tingting [1 ,2 ]
Zhang, Zaoxiao [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Peoples R China
关键词
CO2; absorption; DFT; MEA; water; methanol; solvation effect;
D O I
10.1016/j.egypro.2014.11.144
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Chemical absorption using Ethanolamine to capture CO2 is considered to be an effective way to cover the large reduction of the greenhouse gas emissions. As the absorption capacity is different between aqueous and nonaqueous solutions, in this work, the reaction processes about monoethanolamine (MEA) absorbing CO2 in aqueous and non-aqueous (take methanol as the medium) solvation effect without solvent molecular are studied using density functional theory (DFT), respectively. The result shows that the reaction mechanism is same both in aqueous and non-aqueous solutions and a two-step reaction process can demonstrate it well. The main effect of the different solvent on the reaction is the relative energy of the optimized configurations. The energy shows that stable configurations have lower relative energy in methanol than in water, which demonstrates that the configurations are more stable in non-aqueous solutions than those in aqueous solutions. (C) 2013 The Authors. Published by Elsevier
引用
收藏
页码:1347 / 1353
页数:7
相关论文
共 50 条
  • [1] Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions
    Kang, Min-Kyoung
    Jeon, Soo-Bin
    Cho, Joon-Hyung
    Kim, Jin-Seop
    Oh, Kwang-Joong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 63 : 281 - 288
  • [2] Novel non-aqueous MEA solutions for CO2 capture
    Bougie, Francis
    Pokras, Daniel
    Fan, Xianfeng
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 86 : 34 - 42
  • [3] CHEMICAL ABSORPTION OF CO2 BY NON-AQUEOUS SOLUTIONS OF CYCLOHEXYLAMINE
    IMAISHI, N
    IGUCHI, H
    HOZAWA, M
    FUJINAWA, K
    KAGAKU KOGAKU RONBUNSHU, 1981, 7 (03) : 261 - 266
  • [4] ABSORPTION OF CO2 INTO AQUEOUS TERTIARY AMINE MEA SOLUTIONS
    RANGWALA, HA
    MORRELL, BR
    MATHER, AE
    OTTO, FD
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1992, 70 (03): : 482 - 490
  • [5] A comparative kinetics study of CO2 absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions
    Jiang, Wusan
    Luo, Xiao
    Gao, Hongxia
    Liang, Zhiwu
    Liu, Bin
    Tontiwachwuthikul, Paitoon
    Hu, Xiayi
    AICHE JOURNAL, 2018, 64 (04) : 1350 - 1358
  • [6] Kinetics of CO2 absorption in to aqueous MEA solutions near equilibrium
    Putta, Koteswara Rao
    Svendsen, Hallvard F.
    Knuutila, Hanna K.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1576 - 1583
  • [7] Experimental and Thermodynamic Investigation on CO2 Absorption in Aqueous MEA Solutions
    Zhu, Kai
    Yue, Changhai
    Wei, Zhenhao
    Huang, Jingjing
    Hu, Meng
    Ji, Yufan
    Liu, Hanfei
    Zhu, Hao
    Guo, Wanxiao
    Zhou, Feng
    Yao, Chaoqun
    Huang, Yiping
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2022, 2022
  • [8] Study on absorption of CO2 into aqueous of MEA by method of pH
    董长勋
    哈尔滨商业大学学报(自然科学版), 2003, (06) : 687 - 690
  • [9] Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles
    Jiang, Jiazong
    Zhao, Bo
    Zhuo, Yuqun
    Wang, Shujuan
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 29 : 135 - 141
  • [10] Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles
    Jiang, Jiazong
    Zhao, Bo
    Zhuo, Yuqun
    Wang, Shujuan
    International Journal of Greenhouse Gas Control, 2014, 29 : 135 - 141