Spatio-temporal Trajectory Region-of-Interest Mining Using Delaunay Triangulation

被引:25
作者
Bermingham, Luke [1 ]
Lee, Kyungmi [1 ]
Lee, Ickjai [1 ]
机构
[1] James Cook Univ, Coll Business Law & Governance, Informat Technol, POB 6811, Cairns, Qld 4870, Australia
来源
2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW) | 2014年
关键词
Trajectory; region of interest; delaunay;
D O I
10.1109/ICDMW.2014.47
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the ubiquity of GPS enabled devices and the advances in sensing technologies, trajectory data has become abundant. Regions of interest are important since they describe specific hot-spots within the data that often correlate with domain specific phenomena. Traditional region of interest mining utilises grid based rasters to model space. This suffers from two main problems: hard to determine the best grid size and unable to model consistent spatial adjacency. This paper utilises a 3D argument free space tessellation, Delaunay triangulation, to partition spatio-temporal trajectory data and extract arbitrary shaped regions of interest. Experimental results demonstrate the robustness and improved effectiveness of our approach at identifying granular spatio-temporal patterns.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 10 条
  • [1] Assam R., 2012, P 1 ACM SIGSPATIAL I, P71
  • [2] Spatio-temporal Sequential Pattern Mining for Tourism Sciences
    Bermingham, Luke
    Lee, Ickjai
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2014, 29 : 379 - 389
  • [3] Sequential pattern mining of geo-tagged photos with an arbitrary regions-of-interest detection method
    Cai, Guochen
    Hio, Chihiro
    Bermingham, Luke
    Lee, Kyungmi
    Lee, Ickjai
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (07) : 3514 - 3526
  • [4] de Graaff V., 2013, P 21 ACM SIGSPATIAL, P388
  • [5] Giannotti F, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P330
  • [6] Okabe Atsuyuki., 2008, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
  • [7] 4D+SNN: A Spatio-temporal Density-based Clustering Approach with 4D Similarity
    Oliveira, Ricardo
    Santos, Maribel Yasmina
    Moura-Pires, Joao
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2013, : 1045 - 1052
  • [8] Palma AT, 2008, APPLIED COMPUTING 2008, VOLS 1-3, P863
  • [9] Uddin Md Reaz, 2011, 2011 12th IEEE International Conference on Mobile Data Management (MDM 2011), P39, DOI 10.1109/MDM.2011.12
  • [10] Mining frequent trajectory pattern based on vague space partition
    Wang, Liang
    Hu, Kunyuan
    Ku, Tao
    Yan, Xiaohui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 50 : 100 - 111