Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage

被引:59
|
作者
Yao, Wentao [1 ]
Odegard, Gregory M. [1 ]
Huang, Zhennan [2 ]
Yuan, Yifei [2 ,3 ]
Asayesh-Ardakani, Hasti [1 ,2 ]
Sharifi-Asl, Soroosh [2 ]
Cheng, Meng [2 ]
Song, Boao [2 ]
Deivanayagam, Ramasubramonian [2 ]
Long, Fei [1 ]
Friedrich, Craig R. [1 ]
Amine, Khalil [3 ,4 ]
Lu, Jun [3 ]
Shahbazian-Yassar, Reza [1 ,2 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA
[4] Imam Abdulrahman Bin Faisal Univ Dammam, Inst Res & Med Consultat, Dammam 34212, Saudi Arabia
基金
美国国家科学基金会;
关键词
Manganese dioxide; Facet engineering; Hydrothermal synthesis; Growth mechanism; Lithium-ion batteries; HYDROTHERMAL SYNTHESIS; PHASE-TRANSFORMATION; MNO2; NANOSTRUCTURES; ALPHA-MNO2; OXIDE; ION; PERFORMANCE; COMPOSITES; MECHANISMS; NANOWIRES;
D O I
10.1016/j.nanoen.2018.03.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Engineering crystal facets to enhance their functionalities often require complex processing routes to suppress the growth of surfaces with the lowest thermodynamic energies. Herein, we report a unique method to control the morphologies of beta-MnO2 crystals with different occupancy of {100}/{111} facets through the effect of K+ cations. Combining aberration-corrected scanning transmission electron microscopy (STEM), ultramicrotomy, and dynamic functional theory (DFT) simulation, we clarified that the beta-MnO2 crystals were formed through a direct solid-state phase transition process. Increasing the concentration of K+ cations in the precursor gradually changed the morphology of beta-MnO2 from bipyramid prism ({100}+{111} facets) to an octahedron structure ({111} facets). The K+ cations controlled the morphology of beta-MnO2 by affecting the formation of a-K0.5Mn4O8 intermediate phase and the subsequent phase transition. Utilizing the beta-MnO2 crystals as the cathode for Li-ion batteries showed that highly exposed {111} facets offered beta-MnO2 crystal better rate performance, with similar to 70% capacity retention when the charge-discharge rate increased from 20 mA/g to 200 mA/g. Our work revealed a new mechanism to tune the morphology of this earth-abundant metal oxide crystal, which could be used to adjust its electrochemical performance for different applications, such as supercapacitors and catalysts for metalair batteries and fuel cells.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [41] Controlled Synthesis of Mesoporous MnO2 Nanospindles
    Han Ling
    Ni Ji-Peng
    Zhang Liang-Miao
    Yue Bao-Hua
    Shen Shan-Shan
    Zhang Hao
    Lu Wen-Cong
    ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (03) : 743 - 748
  • [42] Origin of Improved Electrochemical Activity of β-MnO2 Nanorods: Effect of the Mn Valence in the Precursor on the Crystal Structure and Electrode Activity of Manganates
    Kim, In Young
    Ha, Hyung-Wook
    Kim, Tae Woo
    Paik, Younkee
    Choy, Jin-Ho
    Hwang, Seong-Ju
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (51) : 21274 - 21282
  • [43] Enhanced electrochemical energy storage devices utilizing a one-dimensional (1D) α-MnO2 nanocomposite encased in onion-like carbon
    Palaniyandy, N.
    Lakshmi, D.
    Thenmozhi, G.
    Kheawhom, S.
    Musyoka, N. N.
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (13) : 5450 - 5469
  • [44] Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors
    Davoglio, Rogerio A.
    Cabello, Gema
    Marco, Jose F.
    Biaggio, Sonia R.
    ELECTROCHIMICA ACTA, 2018, 261 : 428 - 435
  • [45] Fabrication of new Mn-based MXene structure from MnO2 for electrochemical energy storage applications
    Eraky, Mostafa S.
    El-Sadek, Mohamed
    Shenouda, Atef Y.
    Sanad, Moustafa M. S.
    MONATSHEFTE FUR CHEMIE, 2024, 155 (02): : 131 - 141
  • [46] Direct growth of MnO2 on carbon fiber cloth for electrochemical capacitor
    Chi, Hong Zhong
    Tian, Shun
    Hu, Xuansheng
    Qin, Haiying
    Xi, Junhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 587 : 354 - 360
  • [47] One-pot hydrothermal synthesis of β-MnO2 crystals and their magnetic properties
    Yu, Peng
    Zhang, Xiong
    Sun, Xianzhong
    Wang, Dongliang
    Ma, Yanwei
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2013, 74 (11) : 1626 - 1631
  • [48] Design and Synthesis of MnO2/Mn/MnO2 Sandwich-Structured Nanotube Arrays with High Supercapacitive Performance for Electrochemical Energy Storage
    Li, Qi
    Wang, Zi-Long
    Li, Gao-Ren
    Guo, Rui
    Ding, Liang-Xin
    Tong, Ye-Xiang
    NANO LETTERS, 2012, 12 (07) : 3803 - 3807
  • [49] Enhanced Cycleability of Amorphous MnO2 by Covering on α-MnO2 Needles in an Electrochemical Capacitor
    Liu, Quanbing
    Ji, Shan
    Yang, Juan
    Wang, Hui
    Pollet, Bruno G.
    Wang, Rongfang
    MATERIALS, 2017, 10 (09):
  • [50] Rutile (β-)MnO2 Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance
    Tompsett, David A.
    Parker, Stephen C.
    Islam, M. Saiful
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (04) : 1418 - 1426