Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage

被引:59
|
作者
Yao, Wentao [1 ]
Odegard, Gregory M. [1 ]
Huang, Zhennan [2 ]
Yuan, Yifei [2 ,3 ]
Asayesh-Ardakani, Hasti [1 ,2 ]
Sharifi-Asl, Soroosh [2 ]
Cheng, Meng [2 ]
Song, Boao [2 ]
Deivanayagam, Ramasubramonian [2 ]
Long, Fei [1 ]
Friedrich, Craig R. [1 ]
Amine, Khalil [3 ,4 ]
Lu, Jun [3 ]
Shahbazian-Yassar, Reza [1 ,2 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA
[4] Imam Abdulrahman Bin Faisal Univ Dammam, Inst Res & Med Consultat, Dammam 34212, Saudi Arabia
基金
美国国家科学基金会;
关键词
Manganese dioxide; Facet engineering; Hydrothermal synthesis; Growth mechanism; Lithium-ion batteries; HYDROTHERMAL SYNTHESIS; PHASE-TRANSFORMATION; MNO2; NANOSTRUCTURES; ALPHA-MNO2; OXIDE; ION; PERFORMANCE; COMPOSITES; MECHANISMS; NANOWIRES;
D O I
10.1016/j.nanoen.2018.03.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Engineering crystal facets to enhance their functionalities often require complex processing routes to suppress the growth of surfaces with the lowest thermodynamic energies. Herein, we report a unique method to control the morphologies of beta-MnO2 crystals with different occupancy of {100}/{111} facets through the effect of K+ cations. Combining aberration-corrected scanning transmission electron microscopy (STEM), ultramicrotomy, and dynamic functional theory (DFT) simulation, we clarified that the beta-MnO2 crystals were formed through a direct solid-state phase transition process. Increasing the concentration of K+ cations in the precursor gradually changed the morphology of beta-MnO2 from bipyramid prism ({100}+{111} facets) to an octahedron structure ({111} facets). The K+ cations controlled the morphology of beta-MnO2 by affecting the formation of a-K0.5Mn4O8 intermediate phase and the subsequent phase transition. Utilizing the beta-MnO2 crystals as the cathode for Li-ion batteries showed that highly exposed {111} facets offered beta-MnO2 crystal better rate performance, with similar to 70% capacity retention when the charge-discharge rate increased from 20 mA/g to 200 mA/g. Our work revealed a new mechanism to tune the morphology of this earth-abundant metal oxide crystal, which could be used to adjust its electrochemical performance for different applications, such as supercapacitors and catalysts for metalair batteries and fuel cells.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [1] Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage
    Shen, Man
    Zhu, Shi Jin
    Liu, Xiaoying
    Fu, Xin
    Huo, Wang Chen
    Liu, Xiao Li
    Chen, Yu Xiang
    Shan, Qian Yuan
    Yao, Hong-Chang
    Zhang, Yu Xin
    CRYSTENGCOMM, 2019, 21 (35) : 5322 - 5331
  • [2] Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage
    He, Weidong
    Yang, Wenjin
    Wang, Chenggang
    Deng, Xiaolong
    Liu, Baodan
    Xu, Xijin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) : 15235 - 15243
  • [3] Engineering the crystal facets of α-MnO2 nanorods for electrochemical energy storage: experiments and theory
    Wang, Yifan
    Lu, Zhengwei
    Wen, Peipei
    Gong, Yinyan
    Li, Can
    Niu, Lengyuan
    Xu, Shiqing
    NANOSCALE, 2023, 15 (44) : 17850 - 17860
  • [4] Acid-leached α-MnO2 nanowires for electrochemical energy storage
    Byles, Bryan
    Subramanian, Arunkumar
    Pomerantseva, Ekaterina
    NANOEPITAXY: MATERIALS AND DEVICES VI, 2014, 9174
  • [5] Neatly arranged mesoporous MnO2 nanotubes with oxygen vacancies for electrochemical energy storage
    Shen, Man
    Wang, Yi
    Zhang, Yu Xin
    DALTON TRANSACTIONS, 2020, 49 (48) : 17552 - 17558
  • [6] Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage
    Yin, Bosi
    Zhang, Siwen
    Jiang, He
    Qu, Fengyu
    Wu, Xiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) : 5722 - 5729
  • [7] The energy storage mechanisms of MnO2 in batteries
    Guo, Xun
    Yang, Shuo
    Wang, Donghong
    Chen, Ao
    Wang, Yanbo
    Li, Pei
    Liang, Guojin
    Zhi, Chunyi
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 30
  • [8] Shape-controlled nanocrystal γ-MnO2: Preparation and electrochemical features
    Ma, Pei-Pei
    Du, Jie
    He, Zhan-Bing
    Xing, Xiang-Ying
    Ren, Tie-Zhen
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (10): : 2224 - 2230
  • [9] Novel mesoporous MnO2 for high-rate electrochemical capacitive energy storage
    Xu, Mao-Wen
    Jia, Wei
    Bao, Shu-Juan
    Su, Zhi
    Dong, Bin
    ELECTROCHIMICA ACTA, 2010, 55 (18) : 5117 - 5122
  • [10] Facile Synthesis of Ultrafine and Highly Dispersible MnO2 Nanoparticles for Energy Storage in Supercapacitors
    Liu, Zichuan
    Peng, Linghui
    Shen, Lingling
    Qiu, Hongbo
    Fan, Weiren
    Wang, Tao
    Zhu, Bocheng
    Jiang, Xuchuan
    CHEMNANOMAT, 2023, 9 (10)