Electrical modulation of emissivity

被引:59
作者
Vassant, S. [1 ]
Doyen, I. Moldovan [1 ]
Marquier, F. [1 ]
Pardo, F. [2 ]
Gennser, U. [2 ]
Cavanna, A. [2 ]
Pelouard, J. L. [2 ]
Greffet, J. J. [1 ]
机构
[1] Univ Paris 11, CNRS, UMR8501, Lab Charles Fabry,Inst Opt, F-91127 Palaiseau, France
[2] CNRS, Lab Photon & Nanostruct, UPR20, F-91460 Marcoussis, France
关键词
THERMAL EMISSION; ABSORBER; BAND;
D O I
10.1063/1.4793650
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate that it is possible to modulate the thermal emission through an electrical modulation of the emissivity. The basic idea is to design a device where absorption is due to a resonant phenomenon. If the resonance can be electrically controlled, then absorption and, therefore, thermal emission can be controlled. We demonstrate this general concept using THz resonant absorption by surface phonon polaritons coupled through a gold grating. In our device, absorption is mostly due to a surface phonon mode confined in a single quantum well (QW). The THz emissivity is electrically controlled by controlling the quantum well refractive index using a gate voltage to modulate the electron density. This paves the way to electrically modulated incandescent sources. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793650]
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Laboratory technique for quantitative thermal emissivity measurements of geological samples
    Mathew, George
    Nair, Archana
    Rao, T. K. Gundu
    Pande, Kanchan
    JOURNAL OF EARTH SYSTEM SCIENCE, 2009, 118 (04) : 391 - 404
  • [22] Thermal Infrared Emissivity Dependence on Soil Moisture in Field Conditions
    Sanchez, Juan M.
    French, Andrew N.
    Mira, Maria
    Hunsaker, Douglas J.
    Thorp, Kelly R.
    Valor, Enric
    Caselles, Vicente
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11): : 4652 - 4659
  • [23] Equilibrium Temperatures and Directional Emissivity of Sunlit Airless Surfaces With Applications to the Moon
    Rubanenko, L.
    Schorghofer, N.
    Greenhagen, B. T.
    Paige, D. A.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (06)
  • [24] Controlling emissivity in one dimensional photonic crystals using surface truncation
    Sharma, Y.
    Aman, A.
    Prasad, S.
    Singh, V.
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (01)
  • [25] High temperature spectral emissivity of glass and crystal-bearing basalts
    Biren, Jonas
    Slodczyk, Aneta
    Andujar, Joan
    del Campo, Leire
    Cosson, Lionel
    Li, Hao
    Veron, Emmanuel
    Genevois, Cecile
    Ory, Sandra
    Aufaristama, Muhammad
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2022, 430
  • [26] A high precision infrared emissivity measurement method for micro/ nano structures
    Bai, Yinxue
    Wang, Gangquan
    Liu, Yue
    Li, Longfei
    Zhang, Kaihua
    Zhao, Baolin
    Liu, Yufang
    Yu, Kun
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 211
  • [27] Ultrafast pulse generation in the mid-infrared via modulated emissivity
    Xiao, Yuzhe
    Charipar, Nicholas A.
    Pique, Alberto
    Kats, Mikhail A.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [28] Spectral emissivity design using aluminum-based hybrid gratings
    Audhkhasi, Romil
    Povinelli, Michelle L.
    OPTICS EXPRESS, 2020, 28 (06): : 8076 - 8084
  • [29] Comparison of different water infrared emissivity retrieval methods with the theoretical model
    Wei, Ji-An
    Wang, Difeng
    Gong, Fang
    Bai, Yan
    He, Xianqiang
    Chen, Jianyu
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XIX, 2015, 9639
  • [30] Electrical Modulation of Narrowband GaN/AlGaN Quantum-Well Photonic Crystal Thermal Emitters in Mid-Wavelength Infrared
    Kang, Dongyeon Daniel
    Inoue, Takuya
    Asano, Takashi
    Noda, Susumu
    ACS PHOTONICS, 2019, 6 (06): : 1565 - 1571