Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure

被引:135
|
作者
He, Chang [1 ]
Wang, Xianyu [1 ]
Phong Thai [2 ]
Baduel, Christine [1 ,3 ]
Gallen, Christie [1 ]
Banks, Andrew [1 ]
Bainton, Paul [4 ]
English, Karin [5 ,6 ]
Mueller, Jochen F. [1 ]
机构
[1] Univ Queensland, QAEHS, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Int Lab Air Qual & Hlth, Brisbane, Qld, Australia
[3] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Sci Analyt, CNRS,ENS Lyon,UMR 5280, 5 Rue Doua, F-69100 Villeurbanne, France
[4] Dept Environm & Energy, GPO Box 787, Canberra, ACT 2601, Australia
[5] Univ Queensland, Sch Med, Brisbane, Qld, Australia
[6] Univ Queensland, Child Hlth Res Ctr, Childrens Hlth & Environm Program, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
OPFRs; PBDEs; Alternative flame retardants; Indoor dust and air; Plasticizer; POLYBROMINATED DIPHENYL ETHERS; IN-HOUSE DUST; PASSIVE AIR; ORGANIC CONTAMINANTS; GAS-CHROMATOGRAPHY; CONSUMER PRODUCTS; OUTDOOR AIR; PHASE-OUT; PBDES; PLASTICIZERS;
D O I
10.1016/j.envpol.2017.12.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Concentrations of nine organophosphate flame retardants (OPFRs) and eight polybrominated diphenyl ethers (PBDEs) were measured in samples of indoor dust (n = 85) and air (n = 45) from Australian houses, offices, hotels, and transportation (buses, trains, and aircraft). All target compounds were detected in indoor dust and air samples. Median Sigma(9)OPFRs concentrations were 40 gig in dust and 44 ng/m(3) in indoor air, while median Sigma 8PBDEs concentrations were 2.1 mu g/g and 0.049 ng/m(3). Concentrations of FRs were higher in rooms that contained carpet, air conditioners, and various electronic items. Estimated daily intakes in adults are 14000 pg/kg body weight/day and 330 pg/kg body weight/day for Sigma(9)OPFRs and Sigma 8PBDEs, respectively. Our results suggest that for the volatile FRs such as tris(2-chloroethyl) phosphate (TCEP) and TCIPP, inhalation is expected to be the more important intake pathway compared to dust ingestion and dermal contact. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:670 / 679
页数:10
相关论文
共 50 条
  • [11] Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust
    Van den Eede, Nele
    Dirtu, Alin C.
    Ali, Nadeem
    Neels, Hugo
    Covaci, Adrian
    TALANTA, 2012, 89 : 292 - 300
  • [12] Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in dust from different indoor environments in Hangzhou, China
    Sun, Jianqiang
    Xu, Ying
    Zhou, Huabiao
    Zhang, Anping
    Qi, Hong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 631-632 : 1212 - 1220
  • [13] Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure
    McGrath, Thomas J.
    Morrison, Paul D.
    Ball, Andrew S.
    Clarke, Bradley O.
    ENVIRONMENT INTERNATIONAL, 2018, 113 : 191 - 201
  • [14] Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city
    Cristale, Joyce
    Aragao Bele, Tiago Gomes
    Lacorte, Silvia
    Rodrigues de Marchi, Mary Rosa
    ENVIRONMENTAL POLLUTION, 2018, 237 : 695 - 703
  • [15] Human Exposure to Brominated Flame Retardants
    Johnson-Restrepo, Boris
    Villa, Aida L.
    PERSISTENT ORGANIC CHEMICALS IN THE ENVIRONMENT: STATUS AND TRENDS IN THE PACIFIC BASIN COUNTRIES I: CONTAMINATION STATUS, 2016, 1243 : 17 - 53
  • [16] "Novel" brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure
    Ali, Nadeem
    Harrad, Stuart
    Goosey, Emma
    Neels, Hugo
    Covaci, Adrian
    CHEMOSPHERE, 2011, 83 (10) : 1360 - 1365
  • [17] Distribution Patterns of Brominated, Chlorinated, and Phosphorus Flame Retardants with Particle Size in Indoor and Outdoor Dust and Implications for Human Exposure
    Cao, Zhiguo
    Xu, Fuchao
    Covaci, Adrian
    Wu, Min
    Wang, Haizhu
    Yu, Gang
    Wang, Bin
    Deng, Shubo
    Huang, Jun
    Wang, Xiaoyan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (15) : 8839 - 8846
  • [18] Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China
    Wu, Min
    Yu, Gang
    Cao, Zhiguo
    Wu, Dongkui
    Liu, Kai
    Deng, Shubo
    Huang, Jun
    Wang, Bin
    Wang, Yujue
    CHEMOSPHERE, 2016, 150 : 465 - 471
  • [19] A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure
    Chen, Yixiang
    Liu, Qiyuan
    Ma, Jin
    Yang, Shuhui
    Wu, Yihang
    An, Yanfei
    CHEMOSPHERE, 2020, 260
  • [20] Legacy and novel flame retardants from indoor dust in Antarctica: Sources and human exposure
    Corsolini, Simonetta
    Metzdorff, America
    Baroni, Davide
    Roscales, Jose L.
    Jimenez, Begona
    Cerro-Galvez, Elena
    Dachs, Jordi
    Galban-Malagon, Cristobal
    Audy, Ondrej
    Kohoutek, Jiri
    Pribylova, Petra
    Poblete-Morales, Matias
    Avendano-Herrera, Ruben
    Bergami, Elisa
    Pozo, Karla
    ENVIRONMENTAL RESEARCH, 2021, 196