OSCILLATORY AND LOCALIZED PERTURBATIONS OF PERIODIC STRUCTURES AND THE BIFURCATION OF DEFECT MODES

被引:3
|
作者
Duchene, V. [1 ]
Vukicevic, I. [2 ]
Weinstein, M. I. [2 ,3 ]
机构
[1] Univ Rennes 1, Inst Rech Math Rennes, F-35042 Rennes, France
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
periodic Schrodinger operator; defect modes; edge bifurcations; OPERATOR; SPECTRUM; HOMOGENIZATION;
D O I
10.1137/140980302
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q(x) denote a periodic function on the real line. The Schrodinger operator, H-Q = -partial derivative(2)(x) + Q(x), has L-2(R)-spectrum equal to the union of closed real intervals separated by open spectral gaps. In this article we study the bifurcation of discrete eigenvalues (point spectrum) into the spectral gaps for the operator HQ+q epsilon, where q(epsilon) is spatially localized and highly oscillatory in the sense that its Fourier transform, (q) over cap (epsilon), is concentrated at high frequencies. Our assumptions imply that q(epsilon) may be pointwise large but q(epsilon) is small in an average sense. For the special case where q(epsilon)(x) = q(x, x/epsilon) with q(x, y) smooth, real-valued, localized in x, and periodic or almost periodic in y, the bifurcating eigenvalues are at a distance of order epsilon(4) from the lower edge of the spectral gap. We obtain the leading order asymptotics of the bifurcating eigenvalues and eigenfunctions. Consider the (b(*))th spectral band (b(*) >= 1) of H-Q. Underlying this bifurcation is an effective Hamiltonian associated with the lower spectral band edge: H-eff(epsilon) = -partial derivative(x)A(b*,eff)partial derivative(x)-epsilon(Bb*,effX)-B-2 delta(x), where delta(x) is the Dirac distribution, and effective-medium parameters A(b*,eff), B-b*,B-eff > 0 are explicit and independent of epsilon. The potentials we consider are a natural model for wave propagation in a medium with localized, high-contrast, and rapid fluctuations in material parameters about a background periodic medium.
引用
收藏
页码:3832 / 3883
页数:52
相关论文
共 50 条
  • [21] Defect Modes for Dislocated Periodic Media
    Drouot, A.
    Fefferman, C. L.
    Weinstein, M. I.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (03) : 1637 - 1680
  • [22] Nonperiodic Perturbations in Periodic RF Structures
    Jabotinski, Vadim
    Chernin, David
    Nguyen, Khanh T.
    Antonsen, Thomas M., Jr.
    Levush, Baruch
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (04) : 915 - 929
  • [23] The impact of static magnetic perturbations on edge localized modes
    Mou, M. L.
    Huang, J.
    Wu, N.
    Chen, S. Y.
    Tang, C. J.
    PHYSICS LETTERS A, 2016, 380 (33) : 2544 - 2548
  • [24] Edge localized modes control by resonant magnetic perturbations
    Nardon, E.
    Becoulet, M.
    Huysmans, G.
    Czarny, O.
    Thomas, P. R.
    Lipa, M.
    Moyer, R. A.
    Evans, T. E.
    Federici, G.
    Gribov, Y.
    Polevoi, A.
    Saibene, G.
    Portone, A.
    Loarte, A.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 : 1071 - 1075
  • [25] Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator
    Yu. N. Bibikov
    V. R. Bukaty
    Differential Equations, 2019, 55 : 753 - 757
  • [26] Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator
    Bibikov, Yu. N.
    Bukaty, V. R.
    DIFFERENTIAL EQUATIONS, 2019, 55 (06) : 753 - 757
  • [27] Localized defect modes of water waves through two-dimensional periodic bottoms with point defects
    Zhong, HL
    Wu, FG
    Zhang, X
    Liu, YY
    PHYSICS LETTERS A, 2005, 339 (06) : 478 - 487
  • [28] Bifurcation of nontrivial periodic solutions for a biochemical model with impulsive perturbations
    Zhao, Zhong
    Yang, Li
    Chen, Lansun
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 2806 - 2814
  • [29] Localized modes in periodic systems with nonlinear disorders
    Cai, CW
    Chan, HC
    Cheung, YK
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1997, 64 (04): : 940 - 945
  • [30] Localized modes in periodic systems with nonlinear disorders
    Department of Mechanics, Zhongshan University, Guangzhou, China
    不详
    J Appl Mech Trans ASME, 4 (940-945):