Effects of four different restoration treatments on the natural abundance of 15N stable isotopes in plants

被引:10
|
作者
Temperton, Vicky M. [1 ]
Maertin, Lea L. A. [1 ,2 ]
Roeder, Daniela [3 ]
Luecke, Andreas [4 ]
Kiehl, Kathrin [5 ]
机构
[1] Forschungszentrum Julich, Plant Sci IBG 2, D-52425 Julich, Germany
[2] Univ Bayreuth, Dept Biogeog, Bayreuth, Germany
[3] Tech Univ Munich, Freising Weihenstephan, Germany
[4] Forschungszentrum Julich, Agrosphere IBG 3, D-52425 Julich, Germany
[5] Univ Appl Sci Osnabrueck, Osnabruck, Germany
来源
关键词
stable isotopes; restoration; topsoil removal; functional type; legumes; plant-soil interactions; CALCAREOUS GRASSLANDS; MYCORRHIZAL FUNGI; NITROGEN DYNAMICS; SOIL; DELTA-N-15; LEGUMES; CARBON; PSEUDOREPLICATION; BIODIVERSITY; ECOSYSTEMS;
D O I
10.3389/fpls.2012.00070
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
delta N-15 signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil-plant N dynamics in relation to the restoration treatments. In particular, delta N-15 signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant delta N-15 signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured delta N-15 and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in delta N-15 of the non-legume species, with very depleted delta N-15 associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their delta N-15 signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant delta N-15 signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume delta N-15 signals. We discuss our results in the light of what the delta N-15 signals may be telling us about plant-soil N dynamics and their potential value as an indicator for N dynamics in restoration.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Nitrogen source influences natural abundance 15N of Escherichia coli
    Collins, Jessica G.
    Dijkstra, Paul
    Hart, Stephen C.
    Hungate, Bruce A.
    Flood, Nichole M.
    Schwartz, Egbert
    FEMS MICROBIOLOGY LETTERS, 2008, 282 (02) : 246 - 250
  • [42] 15N Hyperpolarization of Dalfampridine at Natural Abundance for Magnetic Resonance Imaging
    Skovpin, Ivan V.
    Svyatova, Alexandra
    Chukanov, Nikita
    Chekmenev, Eduard Y.
    Kovtunov, Kirill V.
    Koptyug, Igor V.
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (55) : 12694 - 12697
  • [43] Natural abundance of 15N in forests across a nitrogen deposition gradient
    Emmett, BA
    Kjonaas, OJ
    Gundersen, P
    Koopmans, C
    Tietema, A
    Sleep, D
    FOREST ECOLOGY AND MANAGEMENT, 1998, 101 (1-3) : 9 - 18
  • [44] 15N Natural Abundance Characteristics of Ammonia Volatilization from Soils Applied by Different Types of Fertilizer
    Peng, Lingyun
    Tao, Limin
    Ma, Shutan
    Wang, Xi
    Wang, Ruhai
    Tu, Yonghui
    Wang, Liangjie
    Ti, Chaopu
    Yan, Xiaoyuan
    ATMOSPHERE, 2022, 13 (10)
  • [45] 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization
    Gebauer, G
    Taylor, AFS
    NEW PHYTOLOGIST, 1999, 142 (01) : 93 - 101
  • [46] Can N fertilizer use efficiency be estimated using 15N natural abundance?
    Chalk, Phillip M.
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 126 : 191 - 193
  • [48] Revealing N management intensity on grassland farms based on natural δ15N abundance
    Kriszan, Melanie
    Schellberg, Juergen
    Amelung, Wulf
    Gebbing, Thomas
    Poetsch, Erich M.
    Kuehbauch, Walter
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2014, 184 : 158 - 167
  • [49] Natural Abundance of 15N in Main N-Containing Chemical Fertilizers of China
    CAO YA-CHENG
    Pedosphere, 1991, (04) : 377 - 382
  • [50] A positive relationship between the abundance of ammonia oxidizing archaea and natural abundance δ15N of ecosystems
    Adair, Karen
    Blazewicz, Steven J.
    Hungate, Bruce A.
    Hart, Stephen C.
    Dijkstra, Paul
    Schwartz, Egbert
    SOIL BIOLOGY & BIOCHEMISTRY, 2013, 65 : 313 - 315