Warm. Circumpolar Deep Water at the Western Getz Ice Shelf Front, Antarctica

被引:26
作者
Assmann, K. M. [1 ]
Darelius, E. [2 ,3 ]
Wahlin, A. K. [1 ]
Kim, T. W. [4 ]
Lee, S. H. [4 ]
机构
[1] Univ Gothenburg, Dept Marine Sci, Gothenburg, Sweden
[2] Univ Bergen, Geophys Inst, Bergen, Norway
[3] Bjerknes Ctr Climate Res, Bergen, Norway
[4] Korea Polar Res Inst, Incheon, South Korea
关键词
AMUNDSEN SEA; VARIABILITY; TRANSPORT; INFLOW; SECTOR;
D O I
10.1029/2018GL081354
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Getz Ice Shelf is one of the largest sources of fresh water from ice shelf basal melt in Antarctica. We present new observations from three moorings west of Siple Island 2016-2018. All moorings show a persistent flow of modified Circumpolar Deep Water toward the western Getz Ice Shelf. Unmodified Circumpolar Deep Water with temperatures up to 1.5 degrees C reaches the ice shelf front in frequent episodes. These represent the warmest water observed at any ice shelf front in the Amundsen Sea. Mean currents within the warm bottom layer of 18-20 cm/s imply an advection time scale of 7 days from shelf break to ice shelf front. Zonal wind stress at the shelf break affects heat content at the ice shelf front on weekly to monthly time scales. Our 2-year mooring records also evince that upwelling over the shelf break controls thermocline depth on subannual to annual time scales. Plain Language Summary The recent retreat of the West Antarctic Ice Sheet has been linked to changes in the transport of warm ocean water up to 1.5 degrees C to the floating ice shelves in the Amundsen Sea. One of these is the Getz Ice Shelf that produces one of the largest amounts of ice shelf melt water in Antarctica. To measure how much ocean heat is transported toward this ice shelf, we deployed a series of temperature, salinity, and current sensors at its western end from 2016 to 2018. We find a constant flow of warm water toward the ice shelf cavity. Comparing our ocean observations with wind data from the area, we found that stronger easterly winds in the area make it harder for the warm water to reach the ice shelf front by depressing the warm bottom layer over the shelf break. Climate projections indicate that these easterlies will weaken in future, making it easier for the warm water to reach the ice shelf base. Gradients in the wind field over the shelf break control the thickness of the warm layer on longer time scales. This provides the missing ocean evidence for previous studies that have linked this wind mechanism to ice sheet changes.
引用
收藏
页码:870 / 878
页数:9
相关论文
共 25 条
  • [1] The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0-A new bathymetric compilation covering circum-Antarctic waters
    Arndt, Jan Erik
    Schenke, Hans Werner
    Jakobsson, Martin
    Nitsche, Frank O.
    Buys, Gwen
    Goleby, Bruce
    Rebesco, Michele
    Bohoyo, Fernando
    Hong, Jongkuk
    Black, Jenny
    Greku, Rudolf
    Udintsev, Gleb
    Barrios, Felipe
    Reynoso-Peralta, Walter
    Taisei, Morishita
    Wigley, Rochelle
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (12) : 3111 - 3117
  • [2] Arneborg L, 2012, NAT GEOSCI, V5, P876, DOI [10.1038/NGEO1644, 10.1038/ngeo1644]
  • [3] Variability of Circumpolar Deep Water transport onto the Amundsen Sea continental shelf through a shelf break trough
    Assmann, K. M.
    Jenkins, A.
    Shoosmith, D. R.
    Walker, D. P.
    Jacobs, S. S.
    Nicholls, K. W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (12) : 6603 - 6620
  • [4] Glacier change along West Antarctica's Marie Byrd Land Sector and links to inter-decadal atmosphere-ocean variability
    Christie, Frazer D. W.
    Bingham, Robert G.
    Gourmelen, Noel
    Steig, Eric J.
    Bisset, Rosie R.
    Pritchard, Hamish D.
    Snow, Kate
    Tett, Simon F. B.
    [J]. CRYOSPHERE, 2018, 12 (07) : 2461 - 2479
  • [5] Darelius E., 2018, PHYS OCEANOGRAPHY MO, DOI [10.21335/NMDC-1721053841, DOI 10.21335/NMDC-1721053841]
  • [6] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [7] Calving fluxes and basal melt rates of Antarctic ice shelves
    Depoorter, M. A.
    Bamber, J. L.
    Griggs, J. A.
    Lenaerts, J. T. M.
    Ligtenberg, S. R. M.
    van den Broeke, M. R.
    Moholdt, G.
    [J]. NATURE, 2013, 502 (7469) : 89 - +
  • [8] Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability
    Dutrieux, Pierre
    De Rydt, Jan
    Jenkins, Adrian
    Holland, Paul R.
    Ha, Ho Kyung
    Lee, Sang Hoon
    Steig, Eric J.
    Ding, Qinghua
    Abrahamsen, E. Povl
    Schroeder, Michael
    [J]. SCIENCE, 2014, 343 (6167) : 174 - 178
  • [9] Wind causes Totten Ice Shelf melt and acceleration
    Greene, Chad A.
    Blankenship, Donald D.
    Gwyther, David E.
    Silvano, Alessandro
    van Wijk, Esmee
    [J]. SCIENCE ADVANCES, 2017, 3 (11):
  • [10] IOC SCOR and IAPSO, 2010, INTERGOVERNMENTAL OC, V56, DOI [DOI 10.0RG/PUBS/TE0S-10_MANUAL.PDF, DOI 10.0RG/PUBS/TE0S-10_]