Caveolin-1 Deficiency Induces Spontaneous Endothelial-to-Mesenchymal Transition in Murine Pulmonary Endothelial Cells in Vitro

被引:42
|
作者
Li, Zhaodong [1 ]
Wermuth, Peter J. [1 ]
Benn, Bryan S. [1 ]
Lisanti, Michael P. [2 ]
Jimenez, Sergio A. [1 ]
机构
[1] Thomas Jefferson Univ, Jefferson Inst Mol Med, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ, Jefferson Stein Cell Biol & Regenerat Med Ctr, Philadelphia, PA 19107 USA
关键词
TRANSCRIPTION FACTOR SNAIL; TGF-BETA; SCAFFOLDING DOMAIN; SYSTEMIC-SCLEROSIS; MYOFIBROBLAST; PATHOGENESIS; EXPRESSION; FIBROSIS; TISSUE; FIBROBLASTS;
D O I
10.1016/j.ajpath.2012.10.022
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
It was previously demonstrated that transforming growth factor beta (TGF-beta) induces endothelial-to-mesenchymal transition (EndoMT) in murine Lung endothelial cells (ECs) in vitro. Owing to the important role of caveolin-1 (CAV1) in TGF-beta receptor internalization and TGF-beta signaling, the participation of CAV1 in the induction of EndoMT in murine lung ECs was investigated. Pulmonary ECs were isolated from wild-type and Cav1 knockout mice using immunomagnetic methods with sequential anti-CD31 and anti-CD102 antibody selection followed by in vitro culture and treatment with TGF-beta 1. EndoMT was assessed by semiquantitative RT-PCR for Acta2, Col1a1, Snai1, and Snai2; by immunofluorescence for alpha-smooth muscle actin; and by Western blot analysis for alpha-smooth muscle actin, SNAIL1, SNAIL2, and the alpha 2 chain of type I collagen. The same studies were performed in Cav1(-/-) pulmonary ECs after restoration of functional CAV1 domains using a cell-permeable CAV1 scaffolding domain peptide. Pulmonary ECs from Cav1 knockout mice displayed high Levels of spontaneous Acta2, Col1A, Snai1, and Snai2 expression, which increased after TGF-beta treatment. Spontaneous and TGF-beta 1-stimulated EndoMT were abrogated by the restoration of functional CAV1 domains using a cell-permeable peptide. The findings suggest that CAV1 regulation of EndoMT may play a role in the development of fibroproliferative vasculopathies. (Am J Pathol 2013, 182: 325-331; http://dx.doi.org/10.1016/j.ajpath.2012.10.022)
引用
收藏
页码:325 / 331
页数:7
相关论文
共 50 条
  • [31] ROCK1 Induces Endothelial-to-Mesenchymal Transition in Glomeruli to Aggravate Albuminuria in Diabetic Nephropathy
    Peng, Hui
    Li, Yuanqing
    Wang, Cheng
    Zhang, Jun
    Chen, Yanru
    Chen, Wenfang
    Cao, Jin
    Wang, Yanlin
    Hu, Zhaoyong
    Lou, Tanqi
    SCIENTIFIC REPORTS, 2016, 6
  • [32] Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells
    Chen, Zhenlong
    Oliveira, Suellen D. S.
    Zimnicka, Adriana M.
    Jiang, Ying
    Sharma, Tiffany
    Chen, Stone
    Lazarov, Orly
    Bonini, Marcelo G.
    Haus, Jacob M.
    Minshall, Richard D.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (10) : 1190 - 1202
  • [33] Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells
    Francesca Bianchini
    Silvia Peppicelli
    Pierangelo Fabbrizzi
    Alessio Biagioni
    Benedetta Mazzanti
    Gloria Menchi
    Lido Calorini
    Alberto Pupi
    Andrea Trabocchi
    Molecular and Cellular Biochemistry, 2017, 424 : 99 - 110
  • [34] Aspirin ameliorates pulmonary vascular remodeling in pulmonary hypertension by dampening endothelial-to-mesenchymal transition
    Huang, Ning
    Zhu, Tian-Tian
    Liu, Ting
    Ge, Xiao-Yue
    Wang, Di
    Liu, Hong
    Zhu, Guang-Xuan
    Zhang, Zheng
    Hu, Chang-Ping
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2021, 908
  • [35] Endothelial Cells Lining Sporadic Cerebral Cavernous Malformation Cavernomas Undergo Endothelial-to-Mesenchymal Transition
    Bravi, Luca
    Malinverno, Matteo
    Pisati, Federica
    Rudini, Noemi
    Cuttano, Roberto
    Pallini, Roberto
    Martini, Maurizio
    Larocca, Luigi Maria
    Locatelli, Marco
    Levi, Vincenzo
    Bertani, Giulio Andrea
    Dejana, Elisabetta
    Lampugnani, Maria Grazia
    STROKE, 2016, 47 (03) : 886 - 890
  • [36] Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases
    Lu, Xuexin
    Gong, Jiannan
    Dennery, Phyllis A.
    Yao, Hongwei
    BIOCHEMICAL PHARMACOLOGY, 2019, 168 : 100 - 107
  • [37] Mechanisms of Endothelial-to-Mesenchymal Transition Induction by Extracellular Matrix Components in Pulmonary Fibrosis
    O. A. Grigorieva
    M. A. Vigovskiy
    U. D. Dyachkova
    N. A. Basalova
    N. A. Aleksandrushkina
    M. A. Kulebyakina
    I. L. Zaitsev
    V. S. Popov
    A. Yu. Efimenko
    Bulletin of Experimental Biology and Medicine, 2021, 171 : 523 - 531
  • [38] Mechanisms of Endothelial-to-Mesenchymal Transition Induction by Extracellular Matrix Components in Pulmonary Fibrosis
    Grigorieva, O. A.
    Vigovskiy, M. A.
    Dyachkova, U. D.
    Basalova, N. A.
    Aleksandrushkina, N. A.
    Kulebyakina, M. A.
    Zaitsev, I. L.
    Popov, V. S.
    Efimenko, A. Yu
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2021, 171 (04) : 523 - 531
  • [39] Galectin-3 Mediates Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension
    Li, Tangzhiming
    Zha, Lihuang
    Luo, Hui
    Li, Suqi
    Zhao, Lin
    He, Jingni
    Li, Xiaohui
    Qi, Qiangqiang
    Liu, Yuwei
    Yu, Zaixin
    AGING AND DISEASE, 2019, 10 (04): : 731 - 745
  • [40] Rapamycin prevents endothelial cell migration by inhibiting the endothelial-to-mesenchymal transition and matrix metalloproteinase-2 and -9: An in vitro study
    Gao, Hua
    Zhang, Jingjing
    Liu, Ting
    Shi, Weiyun
    MOLECULAR VISION, 2011, 17 (364-67): : 3406 - 3414