Virtually semisimple modules and a generalization of the Wedderburn-Artin theorem

被引:23
作者
Behboodi, Mahmood [1 ,2 ]
Daneshvar, Asghar [1 ]
Vedadi, M. R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Completely virtually semisimple ring; principal left ideal ring; semisimple module; semisimple ring; virtually semisimple ring; Wedderburn-Artin theorem; DIRECT SUMS;
D O I
10.1080/00927872.2017.1384002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A widely used result of Wedderburn and Artin states that every left ideal of a ring R is a direct summand of R if and only if R has a unique decomposition as a finite direct product of matrix rings over division rings. Motivated by this, we call a module Mvirtually semisimple if every submodule of M is isomorphic to a direct summand of M and M is called completely virtually semisimple if every submodule of M is virtually semisimple. We show that the left R-module R is completely virtually semisimple if and only if R has a unique decomposition as a finite direct product of matrix rings over principal left ideal domains. This shows that R is completely virtually semisimple on both sides if and only if every finitely generated (left and right) R-module is a direct sum of a singular module and a projective virtually semisimple module. The Wedderburn-Artin theorem follows as a corollary from our result.
引用
收藏
页码:2384 / 2395
页数:12
相关论文
共 23 条
  • [1] Anderson F.W., 1992, GRADUATE TEXTS MATH, V13
  • [2] Artin E., 1927, MATH SEMIN U HAMB, V5, P251
  • [3] ON LEFT KOTHE RINGS AND A GENERALIZATION OF A KOTHE-COHEN-KAPLANSKY THEOREM
    Behboodi, M.
    Ghorbani, A.
    Moradzadeh-Dehkordi, A.
    Shojaee, S. H.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2625 - 2631
  • [4] THEOREM ON NOETHERIAN HEREDITARY RINGS
    CAMILLO, VP
    COZZENS, J
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1973, 45 (01) : 35 - 41
  • [5] Cohn P. M., 2006, FREE IDEAL RINGS LOC
  • [6] HEREDITARY LOCAL RINGS
    COHN, PM
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1966, 27 (01) : 223 - &
  • [7] Artinian dimension and isoradical of modules
    Facchini, Alberto
    Nazemian, Zahra
    [J]. JOURNAL OF ALGEBRA, 2017, 484 : 66 - 87
  • [8] Modules with chain conditions up to isomorphism
    Facchini, Alberto
    Nazemian, Zahra
    [J]. JOURNAL OF ALGEBRA, 2016, 453 : 578 - 601
  • [9] Ghorbani A, 2009, B IRAN MATH SOC, V35, P155
  • [10] GOLDIE AW, 1962, ARCH MATH, V13, P213