Interval Simulated Annealing applied to Electrical Impedance Tomography image reconstruction with fast objective function evaluation

被引:19
|
作者
Martins, Thiago de Castro [1 ]
Guerra Tsuzuki, Marcos de Sales [1 ]
Bueno de Camargo, Erick Dario Leon [2 ]
Lima, Raul Gonzalez [1 ]
de Moura, Fernando Silva [2 ]
Passos Amato, Marcelo Brito [3 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Computat Geometry Lab, Dept Mechatron & Mech Syst Engn, Ave Prof Mello Moraes 2231, Sao Paulo, SP, Brazil
[2] Univ Fed ABC, Ctr Engn Modeling & Appl Social Sci, Rua Arcturus 3, Sao Bernardo Do Campo, Brazil
[3] Univ Sao Paulo, Hosp Clin, Div Pulm, Resp Intens Care Unit, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Simulated Annealing; Electrical Impedance Tomography; Inverse problem; COMPLETE ELECTRODE MODEL; OPTIMIZATION; ERROR;
D O I
10.1016/j.camwa.2016.06.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Electrical Impedance Tomography (EIT) reconstruction problem can be solved as an optimization problem in which the discrepancy between a simulated impedance domain and the observed one is minimized. This optimization problem can be solved by a combination of Simulated Annealing (SA) for optimization and the Finite Element Method (FEM) for simulating the impedance domain. A new objective function based on the total least squares error minimization is proposed. This objective function is ill-conditioned with dense meshes. Two possibilities to overcome ill-conditioning are considered: combination with another objective function (Euclidean distance) and inclusion of a regularization term. To speed up the algorithm, results from previous iterations are used to improve the present iteration convergence, and a preconditioner is proposed. This new reconstruction approach is evaluated with experimental data and compared with previous approaches. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1230 / 1243
页数:14
相关论文
共 50 条
  • [31] Image reconstruction using genetic algorithm in electrical impedance tomography
    Kim, Ho-Chan
    Boo, Chang-Jin
    Kang, Min-Jae
    NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 938 - 945
  • [32] Highly Accurate Image Reconstruction Using Electrical Impedance Tomography
    Kriz, T.
    Dusek, J.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 767 - 771
  • [33] RBF neural network image reconstruction for electrical impedance tomography
    Wang, C
    Lang, R
    Wang, HX
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2549 - 2552
  • [34] Constrained image reconstruction for magnetic detection electrical impedance tomography
    Ireland, Rob H.
    Barber, David C.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2007, 17 (06) : 379 - 382
  • [36] Three-dimensional image reconstruction for electrical impedance tomography
    Kleinermann, F
    Avis, NJ
    Judah, SK
    Barber, DC
    PHYSIOLOGICAL MEASUREMENT, 1996, 17 : A77 - A83
  • [37] Image reconstruction for lung monitoring in wearable electrical impedance tomography
    Wocik, Dariusz
    Stefaniak, Barbara
    Wos, Michal
    Kiczek, Bartlomiej
    Rymarczyk, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (03): : 106 - 109
  • [38] TSS-ConvNet for electrical impedance tomography image reconstruction
    Ameen, Ayman A.
    Sack, Achim
    Poeschel, Thorsten
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [39] Nonlinear reconstruction constrained by image properties in electrical impedance tomography
    Blott, BH
    Daniell, GJ
    Meeson, S
    PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (05): : 1215 - 1224
  • [40] A Conditional Diffusion Model for Electrical Impedance Tomography Image Reconstruction
    Shi, Shuaikai
    Kang, Ruiyuan
    Liatsis, Panos
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74