Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow

被引:4
|
作者
Boussandel, Sahbi [1 ,2 ,3 ]
Chill, Ralph [2 ,3 ]
Fasangova, Eva [4 ,5 ]
机构
[1] Fac Sci Bizerte, Dept Math, Jarzouna Bizerte 7021, Tunisia
[2] Univ Paul Verlaine Metz, Lab Math & Applicat Metz, F-57045 Metz 1, France
[3] CNRS, UMR 7122, F-57045 Metz 1, France
[4] Charles Univ Prague, Dept Math Anal, Prague 18675 8, Czech Republic
[5] Univ Ulm, Inst Angew Anal, D-89069 Ulm, Germany
关键词
curve shortening flow; maximal regularity; local inverse function theorem; NONAUTONOMOUS EVOLUTION-EQUATIONS; MEAN-CURVATURE FLOW; PARABOLIC-SYSTEMS; TIME;
D O I
10.1007/s10587-012-0033-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and L (2)-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 14 条