Curvature and rank of Teichmuller space

被引:44
作者
Brock, J
Farb, B
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
10.1353/ajm.2006.0003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a surface with genus, g and n boundary components, and let d(S) = 3g - 3 + n denote the number of curves in any pants decomposition of S. We employ metric properties of the graph of pants, decomposidom P((S)) to prove that the Weil-Petersson metic on Teichmuller space Teich(S) is Gromov-hyperbolic if and only if d(S) <= 2. When d(S) >= 3, the Weil-Petersson metric has higher rank in the sense of Gromov (it admits a quasi-isometric embedding of R-k, k >= 2);wften d(S) < 2, we combine the hyperbolicity of the comprex of curves and the reative hyperbolicity of P(S) to prove Gromov-hyperbolicity. We prove moreover that Teich (S), admits no geodesically complete, Mod (S)-invariant, Gromov-hyperbolic metric of finite, covolume when d(S) >= 3, and that no complete Riemannian metric of pinched negative curvature exists on Moduli space M(S) when d(S) >= 2.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 21 条
[1]  
Bowditch B. H., 1990, NOTES GROMOVS HYPERB, P64
[2]   The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores [J].
Brock, JF .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :495-535
[3]   Quasi-flats and rigidity in higher rank symmetric spaces [J].
Eskin, A ;
Farb, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (03) :653-692
[4]   Rank-1 phenomena for mapping class groups [J].
Farb, B ;
Lubotzky, A ;
Minsky, Y .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :581-597
[5]  
Hatcher A, 2000, J REINE ANGEW MATH, V521, P1
[6]   A PRESENTATION FOR THE MAPPING CLASS GROUP OF A CLOSED ORIENTABLE SURFACE [J].
HATCHER, A ;
THURSTON, W .
TOPOLOGY, 1980, 19 (03) :221-237
[7]   Asymptotic flatness of the Weil-Petersson metric on Teichmuller space [J].
Huang, Z .
GEOMETRIAE DEDICATA, 2005, 110 (01) :81-102
[8]  
Ivanov N. V., 2002, Ann. Acad. Sci. Fenn. Math, V27, P3
[9]  
Ivanov N. V., 1988, ZAP NAUCHN SEM LENIN, V167, P95
[10]  
IVANOV NV, 2002, HDB GEOMETRIC TOPOLO, P523