Curvature and rank of Teichmuller space

被引:44
作者
Brock, J
Farb, B
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
10.1353/ajm.2006.0003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a surface with genus, g and n boundary components, and let d(S) = 3g - 3 + n denote the number of curves in any pants decomposition of S. We employ metric properties of the graph of pants, decomposidom P((S)) to prove that the Weil-Petersson metic on Teichmuller space Teich(S) is Gromov-hyperbolic if and only if d(S) <= 2. When d(S) >= 3, the Weil-Petersson metric has higher rank in the sense of Gromov (it admits a quasi-isometric embedding of R-k, k >= 2);wften d(S) < 2, we combine the hyperbolicity of the comprex of curves and the reative hyperbolicity of P(S) to prove Gromov-hyperbolicity. We prove moreover that Teich (S), admits no geodesically complete, Mod (S)-invariant, Gromov-hyperbolic metric of finite, covolume when d(S) >= 3, and that no complete Riemannian metric of pinched negative curvature exists on Moduli space M(S) when d(S) >= 2.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 21 条