Peripheral blood gene expression profiles linked to monoamine metabolite levels in cerebrospinal fluid

被引:15
作者
Luykx, J. J. [1 ,2 ,3 ]
Loohuis, L. M. Olde [4 ]
Neeleman, M. [1 ]
Strengman, E.
Bakker, S. C. [1 ]
Lentjes, E. [5 ]
Borgdorff, P. [6 ]
van Dongen, E. P. A. [7 ]
Bruins, P. [7 ]
Kahn, R. S. [1 ]
Horvath, S. [8 ,9 ]
de Jong, S. [4 ,10 ]
Ophoff, R. A. [1 ,4 ,8 ]
机构
[1] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Dept Psychiat, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Translat Neurosci, Brain Ctr Rudolf Magnus, Human Neurogenet Unit, Utrecht, Netherlands
[3] ZNA Hosp, Dept Psychiat, Antwerp, Belgium
[4] Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, Ctr Neurobehav Genet, Los Angeles, CA 90024 USA
[5] Univ Med Ctr Utrecht, Dept Clin Chem & Hematol, Utrecht, Netherlands
[6] Diakonessenhuis Hosp, Dept Anesthesiol Intens Care & Pain Management, Utrecht, Netherlands
[7] Univ Med Ctr Utrecht, Dept Anesthesiol Intens Care & Pain Management, Utrecht, Netherlands
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[9] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA USA
[10] Kings Coll London, MRC Social Genet & Dev Psychiat Ctr, Inst Psychiat Psychol & Neurosci, London, England
关键词
MAJOR DEPRESSIVE DISORDER; ILLUMINA MICROARRAY; NETWORK ANALYSIS; CONFERRING RISK; COMMON VARIANTS; WHOLE-BLOOD; SCHIZOPHRENIA; SEROTONIN; MODEL; BEHAVIOR;
D O I
10.1038/tp.2016.245
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
The blood-brain barrier separates circulating blood from the central nervous system (CNS). The scope of this barrier is not fully understood which limits our ability to relate biological measurements from peripheral to central phenotypes. For example, it is unknown to what extent gene expression levels in peripheral blood are reflective of CNS metabolism. In this study, we examine links between central monoamine metabolite levels and whole-blood gene expression to better understand the connection between peripheral systems and the CNS. To that end, we correlated the prime monoamine metabolites in cerebrospinal fluid (CSF) with whole-genome gene expression microarray data from blood (N = 240 human subjects). We additionally applied gene-enrichment analysis and weighted gene co-expression network analyses (WGCNA) to identify modules of co-expressed genes in blood that may be involved with monoamine metabolite levels in CSF. Transcript levels of two genes were significantly associated with CSF serotonin metabolite levels after Bonferroni correction for multiple testing: THAP7 (P = 2.8 x 10(-8), beta = 0.08) and DDX6 (P = 2.9 x 10(-7), beta = 0.07). Differentially expressed genes were significantly enriched for genes expressed in the brain tissue (P = 6.0 x 10(-52)). WGCNA revealed significant correlations between serotonin metabolism and hub genes with known functions in serotonin metabolism, for example, HTR2A and COMT. We conclude that gene expression levels in whole blood are associated with monoamine metabolite levels in the human CSF. Our results, including the strong enrichment of brain-expressed genes, illustrate that gene expression profiles in peripheral blood can be relevant for quantitative metabolic phenotypes in the CNS.
引用
收藏
页码:e983 / e983
页数:6
相关论文
共 49 条
[1]  
[Anonymous], 2005, LIMMA LINEAR MODELS
[2]   The Expanded Biology of Serotonin [J].
Berger, Miles ;
Gray, John A. ;
Roth, Bryan L. .
ANNUAL REVIEW OF MEDICINE, 2009, 60 :355-366
[3]   ABNORMAL-BEHAVIOR ASSOCIATED WITH A POINT MUTATION IN THE STRUCTURAL GENE FOR MONOAMINE OXIDASE-A [J].
BRUNNER, HG ;
NELEN, M ;
BREAKEFIELD, XO ;
ROPERS, HH ;
VANOOST, BA .
SCIENCE, 1993, 262 (5133) :578-580
[4]   CSF 5-HIAA, cortisol and DHEAS levels in suicide attempters [J].
Chatzittofis, Andreas ;
Nordstrom, Peter ;
Hellstrom, Christer ;
Arver, Stefan ;
Asberg, Marie ;
Jokinen, Jussi .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2013, 23 (10) :1280-1287
[5]   Seasonal changes in gene expression represent cell-type composition in whole blood [J].
De Jong, Simone ;
Neeleman, Marjolein ;
Luykx, Jurjen J. ;
Ten Berg, Maarten J. ;
Strengman, Eric ;
Den Breeijen, Hanneke H. ;
Stijvers, Leon C. ;
Buizer-Voskamp, Jacobine E. ;
Bakker, Steven C. ;
Kahn, Rene S. ;
Horvath, Steve ;
Van Solinge, Wouter W. ;
Ophoff, Roel A. .
HUMAN MOLECULAR GENETICS, 2014, 23 (10) :2721-2728
[6]   Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes [J].
de Jong, Simone ;
van Eijk, Kristel R. ;
Zeegers, Dave W. L. H. ;
Strengman, Eric ;
Janson, Esther ;
Veldink, Jan H. ;
van den Berg, Leonard H. ;
Cahn, Wiepke ;
Kahn, Rene S. ;
Boks, Marco P. M. ;
Ophoff, Roel A. .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2012, 20 (09) :1004-1008
[7]   A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes [J].
de Jong, Simone ;
Boks, Marco P. M. ;
Fuller, Tova F. ;
Strengman, Eric ;
Janson, Esther ;
de Kovel, Carolien G. F. ;
Ori, Anil P. S. ;
Vi, Nancy ;
Mulder, Flip ;
Blom, Jan Dirk ;
Glenthoj, Birte ;
Schubart, Chris D. ;
Cahn, Wiepke ;
Kahn, Rene S. ;
Horvath, Steve ;
Ophoff, Roel A. .
PLOS ONE, 2012, 7 (06)
[8]   lumi:: a pipeline for processing Illumina microarray [J].
Du, Pan ;
Kibbe, Warren A. ;
Lin, Simon M. .
BIOINFORMATICS, 2008, 24 (13) :1547-1548
[9]   A quantitative trait locus for variation in dopamine metabolism mapped in a primate model using reference sequences from related species [J].
Freimer, Nelson B. ;
Service, Susan K. ;
Ophoff, Roel A. ;
Jasinska, Anna J. ;
McKee, Kevin ;
Villeneuve, Annelie ;
Belisle, Alexandre ;
Bailey, Julia N. ;
Breidenthal, Sherry E. ;
Jorgensen, Matthew J. ;
Mann, J. John ;
Cantor, Rita M. ;
Dewar, Ken ;
Fairbanks, Lynn A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (40) :15811-15816
[10]   RDAVIDWebService: a versatile R interface to DAVID [J].
Fresno, Cristobal ;
Fernandez, Elmer A. .
BIOINFORMATICS, 2013, 29 (21) :2810-2811