Active Transfer Learning Network: A Unified Deep Joint Spectral-Spatial Feature Learning Model for Hyperspectral Image Classification

被引:138
作者
Deng, Cheng [1 ]
Xue, Yumeng [1 ]
Liu, Xianglong [2 ]
Li, Chao [1 ]
Tao, Dacheng [3 ,4 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Fac Engn & Informat Technol, Darlington, NSW 2008, Australia
[4] Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, Darlington, NSW 2008, Australia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 03期
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Active learning (AL); deep learning; hyperspectral image (HSI) classification; multiple-feature representation; stacked sparse autoencoder (SSAE); transfer learning (TL); DOMAIN ADAPTATION; DIMENSIONALITY;
D O I
10.1109/TGRS.2018.2868851
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning has recently attracted significant attention in the field of hyperspectral images (HSIs) classification. However, the construction of an efficient deep neural network mostly relies on a large number of labeled samples being available. To address this problem, this paper proposes a unified deep network, combined with active transfer learning (TL) that can be well-trained for HSIs classification using only minimally labeled training data. More specifically, deep joint spectral-spatial feature is first extracted through hierarchical stacked sparse autoencoder (SSAE) networks. Active TL is then exploited to transfer the pretrained SSAE network and the limited training samples from the source domain to the target domain, where the SSAE network is subsequently fine-tuned using the limited labeled samples selected from both source and target domains by the corresponding active learning (AL) strategies. The advantages of our proposed method are threefold: 1) the network can be effectively trained using only limited labeled samples with the help of novel AL strategies; 2) the network is flexible and scalable enough to function across various transfer situations, including cross data set and intraimage; and 3) the learned deep joint spectral-spatial feature representation is more generic and robust than many joint spectral-spatial feature representations. Extensive comparative evaluations demonstrate that our proposed method significantly outperforms many state-of-the-art approaches, including both traditional and deep network-based methods, on three popular data sets.
引用
收藏
页码:1741 / 1754
页数:14
相关论文
共 50 条
  • [41] Hyperspectral Image Classification Via Spectral-Spatial Random Patches Network
    Cheng, Chunbo
    Li, Hong
    Peng, Jiangtao
    Cui, Wenjing
    Zhang, Liming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4753 - 4764
  • [42] Active Deep Feature Extraction for Hyperspectral Image Classification Based on Adversarial Learning
    Wang, Xue
    Tan, Kun
    Pan, Cen
    Ding, Jianwei
    Liu, Zhaoxian
    Han, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [44] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [45] Spectral-Spatial Classification of Hyperspectral Image Using Autoencoders
    Lin, Zhouhan
    Chen, Yushi
    Zhao, Xing
    Wang, Gang
    2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [46] Multilayer Global Spectral-Spatial Attention Network for Wetland Hyperspectral Image Classification
    Xie, Zhuojun
    Hu, Jianwen
    Kang, Xudong
    Duan, Puhong
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Deep Belief Network for Spectral-Spatial Classification of Hyperspectral Remote Sensor Data
    Li, Chenming
    Wang, Yongchang
    Zhang, Xiaoke
    Gao, Hongmin
    Yang, Yao
    Wang, Jiawei
    SENSORS, 2019, 19 (01)
  • [48] Hyperspectral image spectral-spatial classification using local tensor discriminant feature extraction
    Wu, Di
    Zhang, Ye
    Zhong, Sheng Wei
    Zhou, Guang Jiao
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [49] Hyperspectral image classification using spectral-spatial hypergraph convolution neural network
    Ma, Zhongtian
    Jiang, Zhiguo
    Zhang, Haopeng
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [50] Foundation Model-Based Spectral-Spatial Transformer for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62