A Hybrid Monte-Carlo sampling smoother for four-dimensional data assimilation

被引:7
|
作者
Attia, Ahmed [1 ]
Rao, Vishwas [1 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Sci Computat Lab, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
data assimilation; variational methods; ensemble smoothers; Markov chain; Hybrid Monte Carlo; ENSEMBLE KALMAN FILTER; MODEL; FRAMEWORK; 4D-VAR;
D O I
10.1002/fld.4259
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper constructs an ensemble-based sampling smoother for four-dimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommodates non-Gaussian errors and nonlinear model dynamics and observation operators. Unlike the four-dimensional variational method, which only finds a mode of the posterior distribution, the smoother provides an estimate of the posterior uncertainty. One can use the ensemble mean as the minimum variance estimate of the state or can use the ensemble in conjunction with the variational approach to estimate the background errors for subsequent assimilation windows. Numerical results demonstrate the advantages of the proposed method compared to the traditional variational and ensemble-based smoothing methods. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:90 / 112
页数:23
相关论文
共 50 条
  • [31] An Ensemble Approach to Weak-Constraint Four-Dimensional Variational Data Assimilation
    Shaw, Jeremy A.
    Daescu, Dacian N.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 496 - 506
  • [32] Four-Dimensional Variational Data Assimilation for the Canadian Regional Deterministic Prediction System
    Tanguay, Monique
    Fillion, Luc
    Lapalme, Ervig
    Lajoie, Manon
    MONTHLY WEATHER REVIEW, 2012, 140 (05) : 1517 - 1538
  • [33] A simple introduction to Markov Chain Monte-Carlo sampling
    van Ravenzwaaij, Don
    Cassey, Pete
    Brown, Scott D.
    PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 143 - 154
  • [34] Four-dimensional variational assimilation in the unstable subspace and the optimal subspace dimension
    Trevisan, Anna
    D'Isidoro, Massimo
    Talagrand, Olivier
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (647) : 487 - 496
  • [35] Spectral estimates for saddle point matrices arising in weak constraint four-dimensional variational data assimilation
    Dauzickaite, Ieva
    Lawless, Amos S.
    Scott, Jennifer A.
    van Leeuwen, Peter Jan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (05)
  • [36] Comparison of Hybrid Four-Dimensional Data Assimilation Methods with and without the Tangent Linear and Adjoint Models for Predicting the Life Cycle of Hurricane Karl (2010)
    Poterjoy, Jonathan
    Zhang, Fuqing
    MONTHLY WEATHER REVIEW, 2016, 144 (04) : 1449 - 1468
  • [37] The operational global four-dimensional variational data assimilation system at the China Meteorological Administration
    Zhang, Lin
    Liu, Yongzhu
    Liu, Yan
    Gong, Jiandong
    Lu, Huijuan
    Jin, Zhiyan
    Tian, Weihong
    Liu, Guiqing
    Zhou, Bin
    Zhao, Bin
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2019, 145 (722) : 1882 - 1896
  • [38] A Four-Dimensional Variational Constrained Neural Network-Based Data Assimilation Method
    Wang, Wuxin
    Ren, Kaijun
    Duan, Boheng
    Zhu, Junxing
    Li, Xiaoyong
    Ni, Weicheng
    Lu, Jingze
    Yuan, Taikang
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (01)
  • [39] Analytical Four-Dimensional Ensemble Variational Data Assimilation for Joint State and Parameter Estimation
    Liang, Kangzhuang
    Li, Wei
    Han, Guijun
    Gong, Yantian
    Liu, Siyuan
    ATMOSPHERE, 2022, 13 (06)
  • [40] A review on the use of the adjoint method in four-dimensional atmospheric-chemistry data assimilation
    Wang, KY
    Lary, DJ
    Shallcross, DE
    Hall, SM
    Pyle, JA
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2001, 127 (576) : 2181 - 2204