A Hybrid Monte-Carlo sampling smoother for four-dimensional data assimilation

被引:7
|
作者
Attia, Ahmed [1 ]
Rao, Vishwas [1 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Sci Computat Lab, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
data assimilation; variational methods; ensemble smoothers; Markov chain; Hybrid Monte Carlo; ENSEMBLE KALMAN FILTER; MODEL; FRAMEWORK; 4D-VAR;
D O I
10.1002/fld.4259
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper constructs an ensemble-based sampling smoother for four-dimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommodates non-Gaussian errors and nonlinear model dynamics and observation operators. Unlike the four-dimensional variational method, which only finds a mode of the posterior distribution, the smoother provides an estimate of the posterior uncertainty. One can use the ensemble mean as the minimum variance estimate of the state or can use the ensemble in conjunction with the variational approach to estimate the background errors for subsequent assimilation windows. Numerical results demonstrate the advantages of the proposed method compared to the traditional variational and ensemble-based smoothing methods. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:90 / 112
页数:23
相关论文
共 50 条
  • [1] A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation
    Attia, Ahmed
    Sandu, Adrian
    AIMS GEOSCIENCES, 2015, 1 (01): : 41 - 78
  • [2] The reduced-order hybrid Monte Carlo sampling smoother
    Attia, Ahmed
    Stefanescu, Razvan
    Sandu, Adrian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 83 (01) : 28 - 51
  • [3] Parallelization in the time dimension of four-dimensional variational data assimilation
    Fisher, Michael
    Guerol, Selime
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (703) : 1136 - 1147
  • [4] Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation
    Zhang, Fuqing
    Zhang, Meng
    Hansen, James A.
    ADVANCES IN ATMOSPHERIC SCIENCES, 2009, 26 (01) : 1 - 8
  • [5] An economical approach to four-dimensional variational data assimilation
    Wang Bin
    Liu Juanjuan
    Wang Shudong
    Cheng Wei
    Liu Juan
    Liu Chengsi
    Xiao, Qingnong
    Kuo, Ying-Hwa
    ADVANCES IN ATMOSPHERIC SCIENCES, 2010, 27 (04) : 715 - 727
  • [6] Four-dimensional variational data assimilation system for the Earth ionosphere
    Ostanin, Pavel A.
    Kulyamin, Dmitry V.
    Kostrykin, Sergey V.
    Vasilev, Alexei E.
    Dymnikov, Valentin P.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2025, 40 (01) : 33 - 46
  • [7] An explicit four-dimensional variational data assimilation method
    ChongJian Qiu
    Lei Zhang
    AiMei Shao
    Science in China Series D: Earth Sciences, 2007, 50 : 1232 - 1240
  • [8] An explicit four-dimensional variational data assimilation method
    Qiu ChongJian
    Zhang Lei
    Shao AiMei
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2007, 50 (08): : 1232 - 1240
  • [9] An explicit four-dimensional variational data assimilation method
    QIU ChongJian
    ScienceinChina(SeriesD:EarthSciences), 2007, (08) : 1232 - 1240
  • [10] A Framework for Four-Dimensional Variational Data Assimilation Based on Machine Learning
    Dong, Renze
    Leng, Hongze
    Zhao, Juan
    Song, Junqiang
    Liang, Shutian
    ENTROPY, 2022, 24 (02)