AVPpred: collection and prediction of highly effective antiviral peptides

被引:244
作者
Thakur, Nishant [1 ]
Qureshi, Abid [1 ]
Kumar, Manoj [1 ]
机构
[1] CSIR Inst Microbial Technol, Bioinformat Ctr, Sect 39A, Chandigarh 160036, India
关键词
ANTIMICROBIAL PEPTIDES; CONSTRAINED PEPTIDES; PROTEINS; DATABASE; DESIGN; VIRUS; INHIBITORS; DISCOVERY; LIBRARIES; FUSION;
D O I
10.1093/nar/gks450
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the battle against viruses, antiviral peptides (AVPs) had demonstrated the immense potential. Presently, more than 15 peptide-based drugs are in various stages of clinical trials. Emerging and re-emerging viruses further emphasize the efforts to accelerate antiviral drug discovery efforts. Despite, huge importance of the field, no dedicated AVP resource is available. In the present study, we have collected 1245 peptides which were experimentally checked for antiviral activity targeting important human viruses like influenza, HIV, HCV and SARS, etc. After removing redundant peptides, 1056 peptides were divided into 951 training and 105 validation data sets. We have exploited various peptides sequence features, i.e. motifs and alignment followed by amino acid composition and physicochemical properties during 5-fold cross validation using Support Vector Machine. Physiochemical properties-based model achieved maximum 85% accuracy and 0.70 Matthew's Correlation Coefficient (MCC). Performance of this model on the experimental validation data set showed 86% accuracy and 0.71 MCC which is far better than the general antimicrobial peptides prediction methods. Therefore, AVPpred-the first web server for predicting the highly effective AVPs would certainly be helpful to researchers working on peptide-based antiviral development. The web server is freely available at http://crdd.osdd.net/servers/avppred.
引用
收藏
页码:W199 / W204
页数:6
相关论文
共 32 条
[1]   Multiple Peptides Homologous to Herpes Simplex Virus Type 1 Glycoprotein B Inhibit Viral Infection [J].
Akkarawongsa, Radeekorn ;
Pocaro, Nina E. ;
Case, Gary ;
Kolb, Aaron W. ;
Brandt, Curtis R. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2009, 53 (03) :987-996
[2]   Antiviral peptides targeting the west nile virus envelope protein [J].
Bai, Fengwei ;
Town, Terrence ;
Pradhan, Deepti ;
Cox, Jonathan ;
Ashish ;
Ledizet, Michel ;
Anderson, John F. ;
Flavell, Richard A. ;
Krueger, Joanna K. ;
Koski, Raymond A. ;
Fikrig, Erol .
JOURNAL OF VIROLOGY, 2007, 81 (04) :2047-2055
[3]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[4]  
Bailey TL., 1994, Proc Int Conf Intel Syst Mol Biol, V2, P28
[5]   Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? [J].
Brogden, KA .
NATURE REVIEWS MICROBIOLOGY, 2005, 3 (03) :238-250
[6]   Phage Display of Combinatorial Peptide Libraries: Application to Antiviral Research [J].
Castel, Guillaume ;
Chteoui, Mohamed ;
Heyd, Bernadette ;
Tordo, Noel .
MOLECULES, 2011, 16 (05) :3499-3518
[7]   Design and optimization of a multiplex anti-influenza peptide immunoassay [J].
Drummond, James E. ;
Shaw, Eric E. ;
Antonello, Joseph M. ;
Green, Tina ;
Page, Gerald J. ;
Motley, Cliff O. ;
Wilson, Keith A. ;
Finnefrock, Adam C. ;
Liang, Xiaoping ;
Casimiro, Danilo R. .
JOURNAL OF IMMUNOLOGICAL METHODS, 2008, 334 (1-2) :11-20
[8]   Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus [J].
Dwyer, John J. ;
Wilson, Karen L. ;
Davison, Donna K. ;
Freel, Stephanie A. ;
Seedorff, Jennifer E. ;
Wring, Stephen A. ;
Tvermoes, Nicolai A. ;
Matthews, Thomas J. ;
Greenberg, Michael L. ;
Delmedico, Mary K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (31) :12772-12777
[9]   Designing antimicrobial peptides: form follows function [J].
Fjell, Christopher D. ;
Hiss, Jan A. ;
Hancock, Robert E. W. ;
Schneider, Gisbert .
NATURE REVIEWS DRUG DISCOVERY, 2012, 11 (01) :37-51
[10]   High-performance signal peptide prediction based on sequence alignment techniques [J].
Frank, Karl ;
Sippl, Manfred J. .
BIOINFORMATICS, 2008, 24 (19) :2172-2176