Prospective Calculation of Identification Power for Individual Genes in Analyses Controlling the False Discovery Rate

被引:2
|
作者
Crager, Michael R. [1 ]
机构
[1] Genom Hlth Inc, Dept Biostat, Redwood City, CA 94063 USA
关键词
false discovery rate; gene identification; identification power; power calculation; SAMPLE-SIZE; REGRESSION-MODEL;
D O I
10.1002/gepi.21670
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent work on prospective power and sample size calculations for analyses of high-dimension gene expression data that control the false discovery rate (FDR) focuses on the average power over all the truly nonnull hypotheses, or equivalently, the expected proportion of nonnull hypotheses rejected. Using another characterization of power, we adapt Efron's ([2007] Ann Stat 35:13511377) empirical Bayes approach to post hoc power calculation to develop a method for prospective calculation of the identification power for individual genes. This is the probability that a gene with a given true degree of association with clinical outcome or state will be included in a set within which the FDR is controlled at a specified level. An example calculation using proportional hazards regression highlights the effects of large numbers of genes with little or no association on the identification power for individual genes with substantial association. Genet. Epidemiol. 36:839-847,2012. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 49 条
  • [21] ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts
    Laird, AR
    Fox, PM
    Price, CJ
    Glahn, DC
    Uecker, AM
    Lancaster, JL
    Turkeltaub, PE
    Kochunov, P
    Fox, PT
    HUMAN BRAIN MAPPING, 2005, 25 (01) : 155 - 164
  • [22] Quantile Correlation-Based Sufficient Variable Screening by Controlling False Discovery Rate
    Qiu, Han
    Chen, Jiaqing
    Yuan, Zihao
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (05)
  • [23] Sample size reassessment for a two-stage design controlling the false discovery rate
    Zehetmayer, Sonja
    Graf, Alexandra C.
    Posch, Martin
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2015, 14 (05) : 429 - 442
  • [24] Asymptotic Results on Adaptive False Discovery Rate Controlling Procedures Based on Kernel Estimators
    Neuvial, Pierre
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1423 - 1459
  • [25] Controlling the false-discovery rate when identifying the subgroup benefiting from treatment
    Schnell, Patrick M.
    CLINICAL TRIALS, 2023, 20 (04) : 394 - 404
  • [26] Power Calculations for Multicenter Imaging Studies Controlled by the False Discovery Rate
    Suckling, John
    Barnes, Anna
    Job, Dominic
    Brenan, David
    Lymer, Katherine
    Dazzan, Paola
    Marques, Tiago Reis
    MacKay, Clare
    McKie, Shane
    Williams, Steve R.
    Williams, Steven C. R.
    Lawrie, Stephen
    Deakin, Bill
    HUMAN BRAIN MAPPING, 2010, 31 (08) : 1183 - 1195
  • [27] Controlling the false discovery rate for feature selection in high-resolution NMR spectra
    Kim, Seoung Bum
    Chen, Victoria C. P.
    Park, Youngja
    Ziegler, Thomas R.
    Jones, Dean P.
    Statistical Analysis and Data Mining, 2008, 1 (02): : 57 - 66
  • [28] Some step-down procedures controlling the false discovery rate under dependence
    Ge, Yon-Chao
    Sealfon, Stuart C.
    Speed, Terence P.
    STATISTICA SINICA, 2008, 18 (03) : 881 - 904
  • [29] Practical guidelines for assessing power and false discovery rate for a fixed sample size in microarray experiments
    Tong, Tiejun
    Zhao, Hongyu
    STATISTICS IN MEDICINE, 2008, 27 (11) : 1960 - 1972
  • [30] Asymptotic Properties of MSE Estimate for the False Discovery Rate Controlling Procedures in Multiple Hypothesis Testing
    Palionnaya, Sofia
    Shestakov, Oleg
    MATHEMATICS, 2020, 8 (11) : 1 - 11