Prospective Calculation of Identification Power for Individual Genes in Analyses Controlling the False Discovery Rate

被引:2
作者
Crager, Michael R. [1 ]
机构
[1] Genom Hlth Inc, Dept Biostat, Redwood City, CA 94063 USA
关键词
false discovery rate; gene identification; identification power; power calculation; SAMPLE-SIZE; REGRESSION-MODEL;
D O I
10.1002/gepi.21670
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent work on prospective power and sample size calculations for analyses of high-dimension gene expression data that control the false discovery rate (FDR) focuses on the average power over all the truly nonnull hypotheses, or equivalently, the expected proportion of nonnull hypotheses rejected. Using another characterization of power, we adapt Efron's ([2007] Ann Stat 35:13511377) empirical Bayes approach to post hoc power calculation to develop a method for prospective calculation of the identification power for individual genes. This is the probability that a gene with a given true degree of association with clinical outcome or state will be included in a set within which the FDR is controlled at a specified level. An example calculation using proportional hazards regression highlights the effects of large numbers of genes with little or no association on the identification power for individual genes with substantial association. Genet. Epidemiol. 36:839-847,2012. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 14 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]  
COX DR, 1972, J R STAT SOC B, V34, P187
[3]   Estimating the false discovery rate using nonparametric deconvolution [J].
de Wiel, Mark A. van ;
Kim, Kyung In .
BIOMETRICS, 2007, 63 (03) :806-815
[4]   Empirical Bayes methods and false discovery rates for microarrays [J].
Efron, B ;
Tibshirani, R .
GENETIC EPIDEMIOLOGY, 2002, 23 (01) :70-86
[5]   SIMULTANEOUS INFERENCE: WHEN SHOULD HYPOTHESIS TESTING PROBLEMS BE COMBINED? [J].
Efron, Bradley .
ANNALS OF APPLIED STATISTICS, 2008, 2 (01) :197-223
[6]   Size, power and false discovery rates [J].
Efron, Bradley .
ANNALS OF STATISTICS, 2007, 35 (04) :1351-1377
[7]   Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates [J].
Hsieh, FY ;
Lavori, PW .
CONTROLLED CLINICAL TRIALS, 2000, 21 (06) :552-560
[8]   Sample size for FDR-control in microarray data analysis [J].
Jung, SH .
BIOINFORMATICS, 2005, 21 (14) :3097-3104
[9]   Quick calculation for sample size while controlling false discovery rate with application to microarray analysis [J].
Liu, Peng ;
Hwang, J. T. Gene .
BIOINFORMATICS, 2007, 23 (06) :739-746
[10]   Sample size determination for the false discovery rate [J].
Pounds, S ;
Cheng, C .
BIOINFORMATICS, 2005, 21 (23) :4263-4271