Prospective Calculation of Identification Power for Individual Genes in Analyses Controlling the False Discovery Rate

被引:2
|
作者
Crager, Michael R. [1 ]
机构
[1] Genom Hlth Inc, Dept Biostat, Redwood City, CA 94063 USA
关键词
false discovery rate; gene identification; identification power; power calculation; SAMPLE-SIZE; REGRESSION-MODEL;
D O I
10.1002/gepi.21670
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent work on prospective power and sample size calculations for analyses of high-dimension gene expression data that control the false discovery rate (FDR) focuses on the average power over all the truly nonnull hypotheses, or equivalently, the expected proportion of nonnull hypotheses rejected. Using another characterization of power, we adapt Efron's ([2007] Ann Stat 35:13511377) empirical Bayes approach to post hoc power calculation to develop a method for prospective calculation of the identification power for individual genes. This is the probability that a gene with a given true degree of association with clinical outcome or state will be included in a set within which the FDR is controlled at a specified level. An example calculation using proportional hazards regression highlights the effects of large numbers of genes with little or no association on the identification power for individual genes with substantial association. Genet. Epidemiol. 36:839-847,2012. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 49 条
  • [1] Classifying genes according to predefined patterns by controlling false discovery rate
    Park, Hae-Sang
    Jun, Chi-Hyuck
    Yoo, Joo-Yeon
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (09) : 11753 - 11759
  • [2] Controlling the false discovery rate and increasing statistical power in ecological studies
    Waite, Thomas A.
    Campbell, Lesley G.
    ECOSCIENCE, 2006, 13 (04): : 439 - 442
  • [3] Identification of differentially expressed genes and false discovery rate in microarray studies
    Gusnanto, Arief
    Calza, Stefano
    Pawitan, Yudi
    CURRENT OPINION IN LIPIDOLOGY, 2007, 18 (02) : 187 - 193
  • [4] A clarifying comparison of methods for controlling the false discovery rate
    Yin, Yaling
    Soteros, Christine E.
    Bickis, Mikelis G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2126 - 2137
  • [5] Hierarchical false discovery rate-controlling methodology
    Yekutieli, Daniel
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (481) : 309 - 316
  • [6] Controlling False Discovery Rate Using Gaussian Mirrors
    Xing, Xin
    Zhao, Zhigen
    Liu, Jun S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 222 - 241
  • [7] A Process Monitoring Scheme Controlling False Discovery Rate
    Lee, Sang-Ho
    Jun, Chi-Hyuck
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (10) : 1912 - 1920
  • [8] Controlling the false discovery rate in modeling brain functional connectivity
    Li, Junning
    Wang, Z. Jane
    McKeown, Martin J.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2105 - +
  • [9] Controlling the false discovery rate in transformational sparsity: Split Knockoffs
    Cao, Yang
    Sun, Xinwei
    Yao, Yuan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 86 (02) : 386 - 410
  • [10] Multivariate Process Control Chart for Controlling the False Discovery Rate
    Park, Jang-Ho
    Jun, Chi-Hyuck
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2012, 11 (04): : 385 - 389