Infrared microspectroscopy combined with conventional atomic force microscopy

被引:9
|
作者
Kwon, B. [1 ,5 ]
Schulmerich, M. V. [2 ,3 ,5 ]
Elgass, L. J. [2 ]
Kong, R. [2 ,5 ]
Holton, S. E. [2 ,5 ]
Bhargava, R. [1 ,2 ,3 ,4 ,5 ]
King, W. P. [1 ,3 ,5 ,6 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[3] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Univ Illinois, Ctr Canc, Urbana, IL 61801 USA
[5] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Bimaterial; Microcantilever; Infrared; Thermomechanical; Photothermal; FT-IR spectroscopy; Monochromator; Spectral resolution; Spatial resolution; SPATIAL-RESOLUTION; PERFORMANCE; ABSORPTION; SPECTROMICROSCOPY; AFM;
D O I
10.1016/j.ultramic.2012.03.007
中图分类号
TH742 [显微镜];
学科分类号
摘要
This paper reports nanotopography and mid infrared (IR) microspectroscopic imaging coupled within the same atomic force microscope (AFM). The reported advances are enabled by using a bimaterial microcantilever, conventionally used for standard AFM imaging, as a detector of monochromatic IR light. IR light intensity is recorded as thermomechanical bending of the cantilever measured upon illumination with intensity-modulated, narrowband radiation. The cantilever bending is then correlated with the sample's IR absorption. Spatial resolution was characterized by imaging a USAF 1951 optical resolution target made of SU-8 photoresist. The spatial resolution of the AFM topography measurement was a few nanometers as expected, while the spatial resolution of the IR measurement was 24.4 mu m using relatively coarse spectral resolution (25-125 cm(-1)). In addition to well-controlled samples demonstrating the spatial and spectral properties of the setup, we used the method to map engineered skin and three-dimensional cell culture samples. This research combines modest IR imaging capabilities with the exceptional topographical imaging of conventional AFM to provide advantages of both in a facile manner. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 50 条
  • [21] Error Analysis of the Combined-Scan High-Speed Atomic Force Microscopy
    Liu, Lu
    Kong, Ming
    Wu, Sen
    Xu, Xinke
    Wang, Daodang
    SENSORS, 2021, 21 (18)
  • [22] Facet type determination based on combined atomic force microscopy and electron backscatter diffraction
    Bruning, Ralf
    Hajati, Mehrad
    Lelievre, Peter G.
    Bernhard, Tobias
    Dieter, Sascha
    Dietrich, Gregoire
    JOURNAL OF MICROSCOPY, 2023, 290 (01) : 10 - 22
  • [23] Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
    Krause, Marina
    te Riet, Joost
    Wolf, Katarina
    PHYSICAL BIOLOGY, 2013, 10 (06)
  • [24] Total Internal Reflection Peak Force Infrared Microscopy
    Wang, Haomin
    Wang, Le
    Janzen, Eli
    Edgar, James H.
    Xu, Xiaoji G.
    ANALYTICAL CHEMISTRY, 2021, 93 (02) : 731 - 736
  • [25] ATOMIC FORCE MICROSCOPY-ATOMIC INVESTIGATION METHOD
    Bute, O.
    Cimpoca, V.
    JOURNAL OF SCIENCE AND ARTS, 2007, 7 : 20 - 25
  • [26] High-aspect ratio needle probes for combined scanning electrochemical microscopy-Atomic force microscopy
    Wain, Andrew J.
    Cox, David
    Zhou, Shengqi
    Turnbull, Alan
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (01) : 78 - 81
  • [27] Force Sensing on Cells and Tissues by Atomic Force Microscopy
    Holuigue, Hatice
    Lorenc, Ewelina
    Chighizola, Matteo
    Schulte, Carsten
    Varinelli, Luca
    Deraco, Marcello
    Guaglio, Marcello
    Gariboldi, Manuela
    Podesta, Alessandro
    SENSORS, 2022, 22 (06)
  • [28] Polynomial force approximations and multifrequency atomic force microscopy
    Platz, Daniel
    Forchheimer, Daniel
    Tholen, Erik A.
    Haviland, David B.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2013, 4 : 352 - 360
  • [29] Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy
    Hong, Xia
    Liu, Yanmei
    Li, Jun
    Guo, Wei
    Bai, Yubai
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (17) : 2607 - 2611
  • [30] Nanoscale imaging of biological samples with responsivity corrected Atomic Force Microscopy-Infrared (AFM-IR) spectroscopy
    Kenkel, Seth
    Bhargava, Rohit
    NANOSCALE IMAGING, SENSING, AND ACTUATION FOR BIOMEDICAL APPLICATIONS XVI, 2019, 10891