DFT investigation of CO2 hydrogenation to methanol over Ir-doped Cu surface

被引:13
|
作者
Liu, Lingna [1 ]
Wang, Chao [1 ]
Xue, Fan [1 ]
Li, Jiawei [1 ]
Zhang, Hui [1 ]
Lu, Shuwei [1 ]
Su, Xuanyue [1 ]
Cao, Baowei [1 ]
Huo, Wenlan [1 ]
Fang, Tao [2 ]
机构
[1] Yulin Univ, Sch Chem & Chem Engn, Shaanxi Key Lab Low Metamorph Coal Clean Utilizat, Yulin 719000, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Dept Chem Engn, Xian 710049, Peoples R China
来源
MOLECULAR CATALYSIS | 2022年 / 528卷
基金
中国国家自然科学基金;
关键词
DFT calculation; Ir-doped Cu catalyst; Methanol; Hydrogenation; SELECTIVE HYDROGENATION; CU(111) SURFACES; CARBON-DIOXIDE; CATALYSTS; PD; CU(100); ELECTROREDUCTION; CONVERSION; ETHANOL;
D O I
10.1016/j.mcat.2022.112460
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, density functional theory (DFT) calculations have been employed to investigate the adsorption properties and reaction process of CO2 hydrogenation to CH3OH on Cu-based catalyst surface with different Ir doping ratios. During the reverse water-gas shift (RWGS) pathway, CO2 firstly hydrogenates to trans-COOH. Next, trans-COOH isomerizes to cis-COOH, which will dissociate to CO+OH subsequently. Then CO(2 )will consecutively hydrogenate to HCO, H2CO, H3CO and the target product H3COH. The results show that the formation of CO+OH is the rate-determining step for Ir3Cu6(111), while the rate-determining step for Ir6Cu3(111) and IrMLCu(111) is the formation of HCO, where the energy barriers to be overcome are 1.21 eV, 1.35 eV and 1.34 eV, respectively. In addition, the dissociation of H(2 )is almost spontaneous on IrCu(111) surfaces, which will provide a large amount of H source for the reaction. Overall, this work shows that the change of Ir doping ratio on the surface of Cu catalyst has an pronounced effect on the hydrogenation of CO2 to methanol, especially on IrMLCu(111) surface. Our results are helpful to provide some references for the design and modification of synthetic noble metal Ir doped Cu-based catalyst.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] HYDROGENATION OF CO2 OVER CO/CU/K CATALYSTS
    BAUSSART, H
    DELOBEL, R
    LEBRAS, M
    LEROY, JM
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1987, 83 : 1711 - 1718
  • [42] CO2 Hydrogenation to Methanol on Cu-ZrO2 Catalysts
    Bali, Ferroudja
    Jalowiecki-Duhamel, Louise
    GLOBAL WARMING: ENGINEERING SOLUTIONS, 2010, : 315 - 327
  • [43] CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases
    Witoon, Thongthai
    Chalorngtham, Jiraporn
    Dumrongbunditkul, Porntipar
    Chareonpanich, Metta
    Limtrakul, Jumras
    CHEMICAL ENGINEERING JOURNAL, 2016, 293 : 327 - 336
  • [44] Methanol synthesis from CO2: a DFT investigation on Zn-promoted Cu catalyst
    Huayan Zheng
    Nilesh Narkhede
    Linyi Han
    Huacheng Zhang
    Zhong Li
    Research on Chemical Intermediates, 2020, 46 : 1749 - 1769
  • [45] Methanol synthesis from CO2: a DFT investigation on Zn-promoted Cu catalyst
    Zheng, Huayan
    Narkhede, Nilesh
    Han, Linyi
    Zhang, Huacheng
    Li, Zhong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2020, 46 (03) : 1749 - 1769
  • [46] METHANOL SYNTHESIS BY THE HYDROGENATION OF CO2 OVER ZN-DEPOSITED CU(111) AND CU(110) SURFACES
    FUJITANI, T
    NAKAMURA, I
    WATANABE, T
    UCHIJIMA, T
    NAKAMURA, J
    CATALYSIS LETTERS, 1995, 35 (3-4) : 297 - 302
  • [47] Investigation of the active sites of CO2 hydrogenation to methanol over a Cu-based catalyst by the UBI-QEP approach
    Wang, GC
    Zhao, YZ
    Cai, ZS
    Pan, YM
    Zhao, XZ
    Li, YW
    Sun, YH
    Zhong, B
    SURFACE SCIENCE, 2000, 465 (1-2) : 51 - 58
  • [48] Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation
    Liu, Xianglin
    Cao, Chenxi
    Tian, Pengfei
    Zhu, Minghui
    Zhang, Yulong
    Xu, Jing
    Tian, Yun
    Han, Yi-Fan
    JOURNAL OF CO2 UTILIZATION, 2020, 38 (38) : 10 - 15
  • [49] Hydrogenation of CO2 to methanol over In2O3
    Sun, Kaihang
    Fan, Zhigang
    Rui, Ning
    Ye, Jingyun
    Ge, Qingfeng
    Liu, Changjun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [50] Mechanism of the hydrogenation of CO2 to methanol on a Cu(100) surface:: dipped adcluster model study
    Hu, ZM
    Takahashi, K
    Nakatsuji, H
    SURFACE SCIENCE, 1999, 442 (01) : 90 - 106